Circular Migration, Marriage Markets, and HIV: Long-Run Evidence from Mozambique*

Jon Denton-Schneider[†] *Clark University*

April 22, 2024 Most Recent Version Here

Abstract

I study the impacts of exposure to one of Africa's largest circular migration flows using an arbitrary border within Mozambique that, from 1893 to 1942, separated areas where young men were either pushed into or prevented from migrating. Counterintuitively, but consistent with historical narratives and theoretical predictions, HIV prevalence is lower today on the former migrant-sending side of the border while living standards are similar. The evidence suggests that age gaps between partners – which promote HIV's spread – have long been smaller in this region, as circular migration allowed much younger men to afford the requisite marriage payments to brides' families.

Keywords: Labor migration, bride price, age gaps, HIV, historical determinants of health *JEL Codes*: I14, J12, N37, O15

^{*}I am indebted to Hoyt Bleakley, Eduardo Montero, Achyuta Adhvaryu, and Dean Yang for their guidance and encouragement as I completed my dissertation, the first chapter of which this paper is based on. For helpful comments and suggestions, I thank James Allen, Travis Baseler, Pablo Fernández-Cebrián, Oded Galor, Jason Kerwin, Sara Lowes, Jennifer Mayo, Felix Meier zu Selhausen, Stelios Michalopoulos, Alexander Persaud, Felipe Valencia Caicedo, and conference and seminar participants at AEHN, AFD-World Bank International Conference on Migration and Development, Arizona, Brown Growth Breakfast, Clark, CSAE, DemSemX, Development Day at Notre Dame, EDW, EHA, Michigan, MWEHC, NBER SI DAE, NEUDC, RIDGE, and the YSI-EHES Economic History Graduate Webinar. I also thank Zijun Li, Abby Lin, Edward Nyarko, and Emily Schmitt for outstanding research assistance, and Carlos Lopes Bento for sharing the 1940 map of Mozambique. I am grateful for financial support from a National Institute on Aging training grant (T32AG000221) and the Marshall Weinberg Endowment, both through the University of Michigan Population Studies Center.

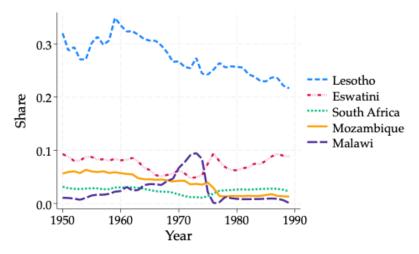
[†]Clark University, Department of Economics, 950 Main St, 219 Jonas Clark Hall, Worcester, MA 01610. Email: jdentonschneider@clarku.edu. Website: jondentonschneider.com.

1. Introduction

Given their massive scale and outsized role in shaping development and health around the world, movements of people out of Africa have received substantial academic and popular focus. But it is arguably the case that "migration within the continent has been far more central to the lives of Africans over . . . the last two centuries" (de Haas and Frankema, 2022, p. i), especially from 1850 to 1960, a period the authors call the continent's contribution to the global Age of Mass Migration. As much of this intra-African movement was temporary, scholars contend that "circular labor migration . . . has been one of the most distinctive features of that continent's development" (Stichter, 1985, p. 1). Therefore, in this paper I study African circular migration's very long-run effects on regions of origin. My focus is on wealth and health due to its historical impacts in these domains and a relative lack of evidence despite migration's ever-growing importance globally (Lucas, 2005; Ratha, Mohapatra and Scheja, 2011; Constant, Nottmeyer and Zimmerman, 2013).

To do so, I look within one of the most significant circular migration flows in African history, which brought hundreds of thousands of men to mines in northeastern South Africa every year since the 1886 discovery of gold on the Witwatersrand plateau.³ Figure 1 shows its scale in the mid- to late twentieth century, when mining companies annually recruited up to one-third of the working-age male population in one Southern African country and as much as one-tenth in others. Nonetheless, these national-level data understate the intensity of circular migration to the Witwatersrand from regions of countries in which high rates of mine labor recruitment were spatially concentrated, such as Mozambique and South Africa (see Appendix A1). Indeed, in the former, it was prohibited in all but the southernmost areas for much of the colonial period.

Because the border between Mozambique's migrant-sending and migrant-restricting regions was drawn arbitrarily in 1893 and erased in 1942, I exploit it to study the causal effects of an additional half-century of historical exposure to one of Africa's largest and longest-lasting circular migration flows. I estimate the main results of this paper using georeferenced data from the Demographic and Health Surveys (DHS) in a regression discontinuity (RD) design to compare present-day economic development and HIV prevalence in areas along the former boundary.


To generate hypotheses regarding contemporary differences (or lack thereof) between the sending and restricting regions, I first turn to narrative accounts of southern Mozambique's history, which I summarize in Section 2. While these areas were governed by separate entities

¹ For example, the slave trades had lasting ill effects on Africa (Nunn, 2008), helped Britain industrialize (Heblich, Redding and Voth, 2023), and brought virulent malaria to the Americas (Yalcindag et al., 2011).

² It has also had important consequences for global development and health. For instance, the Bantu expansion spread new institutions across precolonial Africa (Verhoef, 2018), which are linked to economic performance today (Michalopoulos and Papaioannou, 2013), and migration to Central African cities and mining centers in the mid-twentieth century ignited the HIV pandemic (Pepin, 2011; Faria et al., 2014).

³ Other large migrant labor flows over this period include those recruited by copper mines in Central Africa (Juif and Frankema, 2018), contract and forced labor bringing men from the West African savanna to coastal regions (Teye, 2022), and worker-initiated migration to farms in East Africa (de Haas, 2019).

Figure 1: Share of Men 15-64 Working in Witwatersrand Gold Mines, 1950-89

Notes: The graph shows the number of Witwatersrand mine workers from each country (Crush, Jeeves and Yudelman, 1991) as a share of its male population aged 15 to 64 (UN Population Division, 2022). Appendix A1 shows that recruitment posts in South Africa and Mozambique were only in certain areas.

for this half-century – the former by the colonial state and the latter by a private company – historians have argued that the primary difference between them was indeed in migration policy. Specifically, one of the sending region's largest sources of tax revenue was extracting wealth from migrant laborers, whereas the company's chief function became restricting men's mobility to create a low-cost labor pool; each region "was [thus] governed ... no less exploitatively" than the other (Allina, 2012, p. 94). These scholars also noted that the main impacts of the migration policy difference were not on development but rather on marriage markets, leading to effects such as young men in the sending region being able to pay customary transfers to brides parents' upon marriage ("bride prices") at earlier ages than had previously been possible (Harries, 1983).

I then develop an overlapping generations (OLG) model of the economy and marriage market based on Tertilt (2005) that produces formal predictions of the effects of greater historical exposure to circular migration. I give an overview of the model and these predictions in Section 3, and I present them in their entirety in Appendix B. In brief, the model contains men and women who live through young and old adulthood, and men choose whether to pay bride prices to marry young women and have children whose survival is costly. The key assumption matches the historical context: while young women work for an endogenous wage and save for old age, both young and old men must work for an exogenous wage (i.e., forced labor for a foreign employer).

The first result is that on the baseline balanced growth path (BGP), all marriages are between old men and young women, and positive population growth leads to polygyny. However, once a subset of young men begins to earn much higher wages (i.e., circular migration becomes possible), the second result is that they enter the marriage market immediately, driving up the bride price and population growth while reducing the share of age-disparate marriages and the number of wives per man. After one period of this new wage regime, consumption per person

effectively rises to the new-BGP level, which ends up being not too different from the baseline BGP's given the much higher bride price and population growth's dilution of the domestic capital stock (thus lowering young women's wages). Conversely, the third result is that the marriage market takes another generation to reach the new BGP because the share of age-disparate unions declines again as the first cohort of high-wage young men does not remarry when old.

To map these predictions onto the southern Mozambican context, I view the 50-year existence of the border between the sending and restricting regions as implying that the former began its transition to the new BGP around two generations before the latter. By defining a generation's length as 30 years (Wang et al., 2023) and having the last one under the baseline BGP in the restricting region end in 1940, taking the model literally implies that marriage market outcomes only equalized along the border in 2000, whereas living standards converged by 1970.⁴ As such, when HIV was first detected in Mozambique in 1986 (Audet et al., 2010), the model suggests that the share of age-disparate unions – a major contributor to the virus's spread – would have been lower on the former migrant-sending side due to its earlier transition to the new BGP.⁵ Importantly, this prediction is *not* that circular migration lowers HIV prevalence – its first-order effect is very much the opposite (Weine and Kashuba, 2012) – but rather that *earlier historical exposure to a given rate of circular migration* should equalize risks arising through the direct channel while differentially reducing HIV transmission via its indirect effects (i.e., on marriage markets).

In Section 4, I use the RD setup described above to test the hypotheses of lower HIV prevalence today on the side of the border exposed to an additional half-century of circular migration but no difference in living standards.⁶ The results are very much as predicted: adult HIV prevalence decreases 8 to 11 percentage points (p.p.) just inside the former sending region (40 to 50 percent of the restricting-region mean) and I find no substantive differences in measures of development. These results broadly survive a battery of robustness checks (e.g., varying the bandwidth, weighting kernel, and polynomial order) and the same patterns do not arise in placebo tests (e.g., estimating the same specifications after displacing the boundary and using a different colonial state-private company border in northern Mozambique).

I then show that the proximate causes of the HIV result and the historical channels underlying them appear in large part to be as hypothesized. In Section 5, I find large decreases in partner age gaps just inside the former migrant-sending region (1.8 to 2.2 years, or 25 to 40 percent of the restricting-region mean), but limited or no evidence of discontinuities in other HIV risk factors (e.g., condom use). To quantify the contribution of partner age gaps, a back-of-the-envelope approach suggests that it could generate the entire HIV effect, and causal mediation

⁴ The model omits culture, but including a utility penalty for deviating from the previous generation's marriage patterns would clearly further delay convergence in this domain but not in average consumption.

⁵ The intuition for why age-disparate relationships promote HIV's spread is that older men are a high-HIV prevalence group, so large age gaps between sexual partners facilitates the virus's transmission into the next generation. See de Oliveira et al. (2017) for phylogenetic evidence of this phenomenon.

⁶ Given the low number of DHS survey clusters near the historical boundary, I complement the RD estimates with those from the Cattaneo, Frandsen and Titiunik (2015) randomization inference procedure.

analysis (Imai, Keele and Tingley, 2010) implies that it explains over one-fifth. In Section 6, I use district-level data from the 1940 census of Mozambique to show that discontinuously higher circular migration rates just inside the sending region (20 p.p., or two to four times the rate in the restricting region) indeed coincided with higher marriage rates for young men (14 to 23 p.p., or 25 to 40 percent). Importantly, despite the fact that data from the 1960 census show that circular migration rates had converged along the former border by then, the difference in young men's marriage rates remained substantive (14 to 16 p.p., or 37 to 45 percent), as the model predicted.

Lastly, in Section 7 I study whether the theory and evidence in this paper have implications for the other Southern African countries that participated in this circular migration flow. To do so, I return to the model to examine what happens under *simultaneous historical exposure to different rates of circular migration* (i.e., areas reach the new BGP at the same time but have unequal high-wage shares of young men). Intuitively, the prediction is that raising this share heightens the differences between the baseline and new BGPs, which implies higher living standards, lower partner age gaps, and higher rates of HIV (migration's direct effect on prevalence) that are suppressed by lower partner age gaps (its indirect effect). Using distance to recruitment posts as a proxy for historical migration rates, I find strong evidence of these relationships in georeferenced DHS survey clusters within 25 km of a post, providing suggestive evidence of external validity.

Taken together, these results contribute to several literatures. First, as transportation costs fall rapidly across the globe, it is important to understand the effects of exposure to labor migration on sending regions, yet long-run evidence in this domain is scarce (e.g., Lucas, 1987; Theoharides, 2020; Khanna et al., 2022; Salem and Seck, 2023). The most closely related works in this area are by Dinkelman and Mariotti (2016) and Dinkelman, Kumchulesi and Mariotti (2024), who examine the lasting impacts of Malawi's brief exposure to Witwatersrand mine labor recruitment. There are also influential studies of colonial institutions (e.g., Acemoglu, Johnson and Robinson, 2001; Banerjee and Iyer, 2005; Dell, 2010), a burgeoning subset of which focuses on African labor (Alexopoulou and Juif, 2017; van Waijenburg, 2018; Lowes and Montero, 2021a; Archibong and Obikili, 2023). A very relevant paper in this area is by Dupas et al. (2023), who examine the fertility effects of forced migration in Burkina Faso. I add to these fields by showing the impacts across time of one of Africa's most important circular migration flows, which helps to globalize our understanding of the Age of Mass Migration (e.g., Abramitzky, Boustan and Eriksson, 2012).

Another expanding area of study that my results relate to is on historical shocks as determinants of disparities in health (e.g., Alsan and Wanamaker, 2018; Lowes and Montero, 2021b) and more specifically HIV prevalence (Anderson, 2018; Bertocchi and Dimico, 2019; Cagé and Rueda, 2020). I also add to the analysis of interactions between labor and marriage markets (e.g., Chiappori, Iyigun and Weiss, 2009), especially non-Western ones (Ashraf et al., 2020; Corno, Hildebrandt and Voena, 2020). I contribute to these fields by showing that marriage markets are a novel channel through which history shapes the present (Grosjean and Khattar, 2019; Nunn, 2020), and in particular the spatial patterns in one of the modern world's deadliest pandemics.

2. Historical Overview

In this section, I summarize the relevant elements of southern Mozambique's history, from the intensification of Portuguese colonization in the late nineteenth century to the end of its civil war and the explosion of its HIV epidemic in the 1990s. My focus is on the establishment and administration of the sending and restricting regions as well as the narrative evidence describing and comparing them. The key elements for subsequent sections of the paper are that the border separating these regions was drawn arbitrarily and was erased after 50 years, the main difference between them was arguably in their policies regarding young men's labor mobility, and circular migration during the colonial period may have had much larger impacts on their marriage markets than on their levels of economic development.

2.1. Assignment of Territory to Government or Company Rule

The Berlin Conference of 1884-85 established effective occupation of African territory as the organizing principle for European powers' claims to it. To meet this standard in Mozambique, Portugal pursued a two-part strategy that was common across the continent: projecting the colonial state outward from port cities established in the sixteenth century into the regions surrounding them, and granting vast, mostly unexplored areas to private companies as concessions (Smith and Smith, 1985). Leveraging its presence in Lourenço Marques (present-day Maputo), the government assigned to itself the area from the southern international border to the Sabi River. But it could not quickly establish state capacity between the Sabi River and (tributaries of) the Zambezi River, so it granted a royal charter to the Mozambique Company in 1891 to govern this area (Newitt, 1995).

However, the Mozambique Company's territory was extended southward two years later. Figure 2 shows the final border separating government and company rule in southern Mozambique. A royal decree defined it almost entirely by latitude and longitude given the lack of knowledge of the area, citing the need to effectively occupy more of the colony:

Whereas the Mozambique Company has at its disposal important means of action, and consequently it is highly expedient that [lands south of the Sabi River] should be administered by that Company, so as to insure [their] proper development and defence; ... The administration and "exploitation" of the territory bounded ... on the west by ... the Limpopo [River] ... as far as the point where it is intersected by the 32nd meridian, ... by the direct line starting from the last-named point as far as that where the 32nd meridian intersects the 22nd parallel of latitude, and [by the line] following the course of the said parallel of latitude as far as the sea ... is granted to the Mozambique Company. (Great Britain Foreign Office, 1901, pp. 601-602)

⁷ See Newitt (1995) for a comprehensive history of all of Mozambique, including the region of interest.

8 It was originally supposed to be for 25 years, but shortly after being granted, its term was extended

until 1942, making it the only chartered colonial concession in Africa to last beyond the 1920s (Vail, 1976).

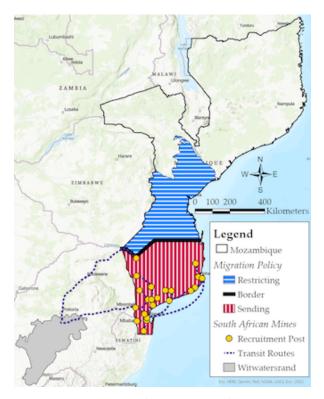


Figure 2: Colonial Migration Policy in Southern Mozambique, 1893-1942

Notes: The map shows the migrant-restricting and migrant-sending regions in southern Mozambique and the border between them. Labor recruitment posts and transit routes are taken from Appendix A₁.

In northern Mozambique, the government also chose to administer the area around the thencapital on Mozambique Island and granted a chartered concession to the Niassa Company from 1891 to 1929 for the land between the Lúrio River and the border with present-day Tanzania (see Appendix A2). Below, I briefly discuss the history of this other colonial state-private company boundary to contrast it with southern Mozambique's.

2.2. Choice of Policy Regarding Men's Circular Migration

Having established effective occupation of the colony, "extracting wealth from African peasant society became the principal objective" of government and company officials, as they soon discovered that labor was the only resource of significance to exploit (Newitt, 1995, p. 406). However, to accomplish this goal in their respective southern Mozambican territories, each regime established highly distinct policies toward men's labor migration.

2.2.1. Migrant-Sending Region

The colonial state established a migrant-sending region to profit from pre-existing labor flows across the international border with the Transvaal Republic (present-day northeastern South

Africa). They arose following the 1886 discovery of the world's largest gold deposits on the Witwatersrand, which led to intense demand for male African labor. To keep wages low, the mining companies formed the monopsonistic Witwatersrand Native Labour Association (WNLA) to recruit workers on their behalf. The colonial state signed several agreements with this group beginning in 1897 to formalize labor recruitment in its territory. It derived revenues from all parts of this process: licensing fees from recruiters, payments from WNLA for each worker, and permit fees from each worker allowing them to work abroad. In addition, Portuguese officials in Johannesburg taxed wages paid on the Witwatersrand to Mozambicans (Newitt, 1995). These agreements also regulated miners' contracts, limiting them to one year with a possible six-month extension and a mandated rest period of six months back in Mozambique. In 1928, the colonial state and the South African government established deferred payment for miners by which they would receive half of their wages only after returning home (Wilson, 1972). The Portuguese had long argued for this provision because miners spent much of their wages on the Witwatersrand – often to buy status goods – rather than in Mozambique (Harries, 1994).

In return, the colonial state granted a monopoly on labor recruitment in its territory to WNLA, which also benefited from Portugal's 1899 colonial labor code. This law pushed men aged 14 to 60 into wage labor by subjecting them "to the moral and legal obligation to seek to acquire through employment the means to subsist and improve their social condition" or face forced labor (Ministério da Marinha e Ultramar, 1900, p. 647). To capitalize on its monopoly and the masses of men seeking paid employment, WNLA established a series of stations across southern Mozambique for recruiting workers as well as transportation infrastructure to move them from there to the Witwatersrand (see Figure 2 for this network in 1946). Appendix A3 shows that the magnitude of this circular migration was substantial: except for the Great Depression, in every year between 1920 and 1942, between 70,000 and 90,000 men from the migrant-sending region worked in the Witwatersrand mines. These numbers are between 12 and 16 percent of the region's total male population in the 1940 census, and 22 to 28 percent of its men aged 15 to 64.

2.2.2. Migrant-Restricting Region

In contrast, the Mozambique Company made its territory into a migrant-restricting region with the goal of creating a captive pool of low-wage workers. It issued regulations in 1900 requiring the population under its rule to engage in six months of paid labor each year, though adminis-

⁹ Men could be absent from southern Mozambique for extended periods because "the role of the male in [these ethnic groups'] agricultural life was negligible" given that the savanna required little clearing and women could cultivate the loose soil (Rita-Ferreira, 1960, p. 144). Junod (1912) and Harris (1959) also noted this phenomenon and the labor mobility it had historically permitted men.

¹⁰ Geologists estimate that one-third of all gold ever mined is from the Witwatersrand (Frimmel, 2019).

¹¹ In addition, the Transvaal government agreed to send up to one-half of its rail traffic through Lourenço Marques, helping Portugal realize its ambition for the city to become a major port (Clarence-Smith, 1985). Because these migrant labor and freight flows contributed heavily to the colonial state's finances, to better manage them it moved its capital from Mozambique Island to Lourenço Marques in 1902 (Newitt, 1995).

trators often conscripted workers on behalf of local employers offering wages too low or working conditions too harsh. Ten years later, the company formalized this forced labor system by establishing a department that could use violence to round up the workers that employers demanded (Guthrie, 2018). This bureaucracy conscripted tens of thousands of workers each year by using its police to reinforce the efforts of traditional authorities. According to correspondence between company administrators, it was common for them to tell chiefs "that on such and such a date they had to supply a certain number of men to go work; generally, . . . because [some] cannot manage to organize the number of workers requested, one or more police go to help the chiefs who fell short" (as cited in Allina, 2012, p. 50).

Another method of ensuring compliance was to punish wives of men who tried to flee the forced labor system (Guthrie, 2018). The company also dissuaded many from attempting to engage in circular migration by impressing "workers returning from abroad ... into forced labor almost immediately, such that they ... could not go home for any length of time unless they were willing to [be conscripted]" (Allina, 2012, p. 58). The company abolished this forced labor bureaucracy in 1926 as a response to a League of Nations report on labor practices in Portuguese colonies, which noted that "the blacks [in the migrant-restricting region] tell the planters that they are the slaves of the Mozambique Company" (Ross, 1925, p. 53). However, employers soon complained that they could not find enough workers without the forced labor system. To push men into returning to these jobs, in 1927 the company doubled the annual hut tax so they would have to find wage labor and mandated that males aged 15 and above carry a pass book containing their picture, work history, tax payments, and place of residence. Officials frequently conducted sweeps to check that men had their pass books and met the six-month work requirement, punishing noncompliance with forced labor (Allina, 2012).

2.3. Narrative Comparisons

2.3.1. Sending versus Restricting Regions in Southern Mozambique

Given the rapacious extraction of wealth from African labor in both regions, Allina (2012, p. 94) contended that "the [migrant-sending region] was governed by the Portuguese colonial state no less exploitatively than [the migrant-restricting region was] by the company itself, and under the same labor code." Similarly, Harries (1994, p. 175) argued that "Portugal was the chief recipient of the profits of [circular migration, which] ... held back the development of southern Mozambique" during the colonial period. It is thus not immediately clear that private rule necessarily would have been worse than direct governance for long-run economic outcomes, in contrast to the experience of the Congo Free State (see Lowes and Montero, 2021a).¹²

¹² Though it was not available to the vast majority of African children in either region, one initial development-relevant contrast between them was in their provision of schooling. Specifically, Protestant missions established village schools in the migrant-sending region and there were some state-run rudimentary schools in densely populated areas, while Catholic missions established schools in the com-

Nonetheless, circular migration may have led to important differences between the two regions in marriage outcomes. Historians have closely linked the two, arguing that in Southern African societies with bride price customs, "one of the primary reasons that men took up migrant labor was to obtain the money necessary for paying bridewealth. . . . Since most men intended to marry in their home areas, [it also] was critical in . . . persuading them to return home" (Guthrie, 2018, p. 72). Both Junod (1912) and Fuller (1955) noted that young men worked in the mines once or twice prior to marriage, implying that many stopped migrating after paying a bride price. As a result, "men were able to marry at a younger age" than would have been possible without the wages from engaging in circular migration, a phenomenon that was observed in other migrant-sending regions in Southern Africa (Harries, 1983, p. 327). Given their higher wages, it also led to substantial bride price inflation, likely reducing the ability to marry of older men who were less capable of grueling mine labor (Harries, 1994). Thus, holding fixed the age at which women married, an important marriage market implication of circular migration would be that newly-matched partners were closer in age.

2.3.2. Government-Company Borders in Northern versus Southern Mozambique

In contrast to its approach in southern Mozambique, the colonial state did not pursue migrant-sending policies in its northern territory. While a detailed study of the history of these two regions is beyond the scope of this paper, a very brief summary of the detailed descriptions in Vail (1976) and Neil-Tomlinson (1977) is that forced labor and violence were also common in the Niassa Company's concession. As such, I view the border between these regions as something of counterfactual to the one in southern Mozambique. Put another way, if the differences between government and company rule explained the differences between the sending and restricting regions, they should also appear in northern Mozambique; if instead they were due to circular migration, similar patterns should not appear there.

2.4. After Migrant-Restricting Policies Ended

Upon coming to power in 1932, the Portuguese autocrat Salazar decided to let the Mozambique Company's charter expire a decade later, as he believed its concession eroded national sovereignty (Newitt, 1995). In 1943, the colonial state took possession of the former migrant-restricting region and undertook an administrative reorganization of the colony. The map in Appendix A4 shows the erasure of the border between the regions as districts were reconstituted

pany's territory (Allina, 2012; Morier-Genoud, 2019). However, in 1930 the colonial state closed many of its village schools due to concern over foreign and Protestant influences on the African population. The decline was drastic: Helgesson (1994) noted that between 1929 and 1930, the number of Methodist village schools fell from 200 to six and their enrollment fell from over 5,400 to under 700 students.

¹³ For example, in the context of Lesotho, "the slight decline in ages at marriage between the mid-1960s and mid-1970s coincided with a period of rapid growth in mine earnings that would have made it easier for men in their twenties to marry" (Timaeus and Graham, 1989, p. 376).

and the provincial boundary was moved north to the Sabi River. Nonetheless, the extraction of wealth from labor continued across the colony through the 1964-74 War of Independence and the end of Portuguese rule in 1975 (Isaacman et al., 1980; Guthrie, 2016).

After gaining its independence, the country subsequently fell into turmoil. To destabilize Mozambique's socialist regime, apartheid-era South Africa sharply cut the number of its men allowed to work on the Witwatersrand (see Appendix A3) and its security services aided the rebels in Mozambique's destructive 1977-92 civil war (Weinstein, 2006). The country became one of the world's poorest in this period, and shortly after stability returned, its HIV epidemic began to explode (Iliffe, 2006). According to UNAIDS estimates, it took less than four years from the detection of its first case in 1986 for Mozambique's adult HIV rates to exceed 1 percent and another decade and a half to reach 10 percent. However, the epidemic soon stabilized and estimated adult prevalence has remained between 11 and 12 percent nationwide since 2010.

3. Model

To organize the subsequent empirical analysis with these historical facts in mind, I use this section to summarize the predictions of an OLG model of the economy and marriage market that I develop in Appendix B and base closely on Tertilt (2005). The object of interest is the transition from a baseline BGP to a new one after a subset of young men begins to receive high wages. I then map these predictions onto the southern Mozambican context and discuss their implications for living standards, marriage and dating, and HIV prevalence today.

3.1. Summary of Model Setup

As I detail in Appendix B1, the model contains 2 generations of adults (young and old) and 2 sexes (male and female). Both men and women value consumption but men also value the number of children – who are born at the end of a period and whose survival into young adulthood in the next period is costly – because they will join their lineages. As in Tertilt (2005), two important assumptions are that old women cannot reproduce and men do not care about when they have children, so they choose the timing based on the tradeoff between fertility and consumption. Therefore, unless men can afford high levels of both when young, only when they are old do they marry and reproduce to delay incurring the cost of children's survival.

To match the colonial African context, I assume that men work in both periods of life for an exogenous wage, analogous to forced labor laws benefiting European capital.¹⁴ However, young women earn an endogenous wage from the domestic representative firm and save to consume when not working in old age. In each period, men and single women choose whether to enter

¹⁴ Implicit in this assumption is that men do not save, which is important for keeping the model simple. Given the discussion of deferred pay laws in the previous section, it seems that men indeed failed to save much of the wages earned from European employers for a substantial portion of the colonial period.

a frictionless marriage market with bride price and polygyny. Because marriage in this model is simply a method of producing legitimate offspring, women must marry when young. Upon doing so, they receive their bride price and pay a share of the cost of their children's survival.¹⁵

3.2. Summary of Model Predictions

The key assumption in solving for the baseline BGP in Appendix B2 is that old men earn weakly more than young men. As discussed above, it implies that all marriages are between old men and young women (i.e., are age-disparate). Therefore, the average number of young women that each old man marries equals the rate of population growth (i.e., is greater than one).

3.2.1. Transition Path from Baseline to New BGP

However, after a subset of young men begin to earn wages that are much higher than old men's, several important shifts occur, which Figure 3 presents as changes relative to the baseline BGP's values. I show in Appendix B3 that in the first such period, high-wage young men enter the marriage market along with old men, causing the bride price to increase dramatically because the supply of young women was fixed in the previous period. As a result, old men demand fewer wives, which sharply reduces the share of marriages that are age-disparate and lowers the number of wives per husband. Both consumption and fertility among the high-wage share of young men increase substantially, but the impact on population growth into the next period is larger than on average consumption across all individuals. The increase in fertility also substantively reduces next period's capital stock per young woman.

I study the changes in subsequent periods along the transition path in Appendix B4. For a number of reasons, including last period's high-wage young men choosing not to reenter the marriage market in old age, the bride price, the share of age-disparate marriages, and population growth into the next period fall and remain below their levels set in the first period. However, the increase in brides' affordability raises the number of wives per husband, though it stays below the baseline-BGP value. In addition, rates of population growth above the baseline BGP's continue to dilute the capital stock, lowering young women's wages but raising the interest rate on old women's savings. Average consumption per person thus changes little after the first period.

3.3. Implications for Outcomes of Interest

To map these predictions onto southern Mozambique, I assume that a generation last 30 years (Wang et al., 2023), and I set Period o to correspond to 1880 in the migrant-sending region and

¹⁵ The assumption that women have property rights over themselves is taken from an earlier version of the author's model (Tertilt, 2003, sec. 7) because it simplifies the calculations and does not change the qualitative predictions. However, it makes savings rates higher, as women can use their bride prices to pay for their children's survival and thus retain all of their labor income for consumption and saving.

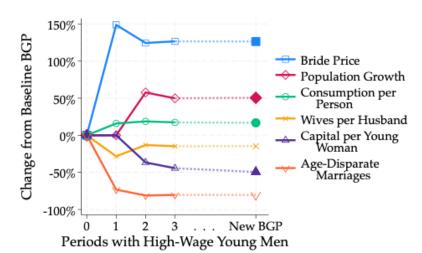


Figure 3: Transition from Baseline to New BGP

Notes: The graph presents predictions of the OLG model of the economy and marriage market summarized in the text and detailed in Appendix B. The model's parameters take the values listed in Appendix B5. Changes are shown over time relative to the baseline BGP after the wage structure shifts in Period 1 so that one-third of young men earn high wages. The smaller and hollow shapes denote values along the transition path, and the larger and solid shapes represent values on the baseline and new BGPs.

1940 in the restricting region (making it Period 2 in the sending region).¹⁶ If the model is taken literally, effective convergence in their living standards – measured as consumption per person – should thus have occurred by 1970. In contrast, convergence in marriage market outcomes like the share of age-disparate unions should have taken longer, not occurring until 2000.

However, it is important to note that the forces determining the model's transition path are entirely mechanical. If the model had also included cultural factors, such as preferences for marriages emulating those of parents and grandparents, they should delay convergence in marriage market outcomes without impacting the speed of convergence in living standards.¹⁷ Indeed, Leclerc-Madlala points out when discussing marriage and dating in Southern Africa that features such as age-disparate relationships

have antecedents in older practices that have long played a part in defining the nature of social life and the particular values and norms associated with sexuality. Many culturally inscribed assumptions and expectations that once legitimized these practices still prevail at present, and continue to influence the meanings that people attach to contemporary sexual relationships and the expectations that people have in relationships. (Leclerc-Madlala, 2008, pp. S22-S23)

¹⁶ Recall that gold was discovered on the Witwatersrand in 1886, sparking the massive demand for circular migrant labor, and the border between the sending and restricting regions was erased in 1942.

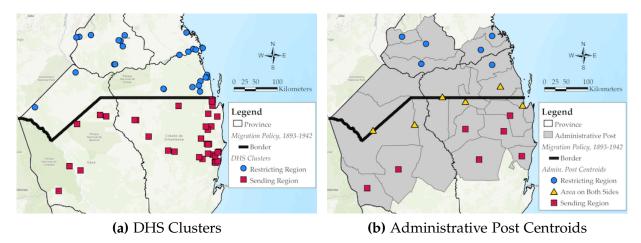
¹⁷ Specifically, suppose that there was an idiosyncratic utility penalty for deviating from the average age disparity and number of wives in the previous generation's marriages. In that case, the marriage market changes that occur predominantly in Period 1 in Figure 3 would instead be spread out across subsequent periods, as progressively larger fractions of high-wage young men departed from previous norms.

But even without incorporating social norms into the model, its mechanical transition path still yields clear implications regarding HIV prevalence. One is that although circular migration promotes the virus's spread (Weine and Kashuba, 2012), convergence in rates of labor mobility (i.e., shares of high-wage young men) by 1970 would imply that this risk factor would have equalized across the former sending and restricting regions well before the first Mozambican case's detection in 1986 and the country's epidemic's explosion in the 1990s (Iliffe, 2006; Audet et al., 2010). In contrast, if the age-disparate share of partnerships – another major HIV risk factor (de Oliveira et al., 2017; Schaefer et al., 2017) – remained lower in the former sending region until 2000, the result should be lower HIV prevalence there today.¹⁸

4. Present-Day Effects

In this section, I test the present-day implications for southern Mozambique discussed above. Table 2 reports RD and randomization inference (RI) estimates for HIV and economic development outcomes, and Figure 5 presents graphical evidence on seroprevalence. Consistent with these predictions, HIV prevalence is indeed much lower just inside the former migrant-sending region and there are no substantive differences in measures of living standards today.

4.1. Data


I use georeferenced data from the 2009, 2011, 2015, and 2018 DHS waves in Mozambique. Figure 4a shows the reported locations of the survey clusters within 150 km of the historical border, which are slightly displaced for respondents' anonymity and privacy. As such, four urban clusters along the coast may have been displaced into the wrong region, so I remove them from the sample. Below, I discuss the implications for the analysis of not knowing the remaining clusters' exact locations.

As a complement to these data, I also use the IPUMS 10-percent sample of the 2007 Mozambican census, which groups respondents into third-level administrative units (administrative posts). Figure 4b shows those with centroids within 150 km of the former border. Because the number of observations is much greater but some administrative posts straddle the former border, using the census data addresses some issues with the DHS but suffers from others that it does not. I also discuss these considerations below.

¹⁸ The implications regarding polygyny are more ambiguous for two reasons. First, there is often a negative ecological association between polygyny and HIV (Reniers and Tfaily, 2008, 2012), and the number of lifetime sexual partners may matter more than whether they are concurrent or sequential (Tanser et al., 2011). Second, the number of wives per husband marrying in a period does not change monotonically.

¹⁹ Urban clusters are displaced by up to 2 km, 99 percent of rural clusters by up to 5 km, and 1 percent of rural clusters by up to 10 km.

Figure 4: Georeferenced Survey Units within 150 Kilometers of Migration Policy Border

Notes: The left map shows the reported locations of survey clusters within 150 km of the historical border in the 2009, 2011, 2015, and 2018 DHS waves in Mozambique. The right map shows administrative posts (3rd-level administrative units) with centroids within 150 km of the historical border.

4.2. Empirical Strategy

I use an RD design to compare the long-run impact of an additional half-century of historical exposure to circular migration in the former sending region. The estimating equation is

$$y_{i,u} = \alpha + \tau \text{MigrantSending}_u + f(\text{Distance}_u) + \text{Lon}_u + \mathbf{X}_i \beta + \delta_t + \epsilon_{i,u} \text{ for } u \in B^*_{\text{MSE}}$$
 (1)

where $y_{i,u}$ is an outcome for individual i in geographic unit u (i.e., DHS survey cluster or administrative post), MigrantSending_u is an indicator for whether u (or its centroid) is in that region, $f(\text{Distance}_u)$ is the RD polynomial controlling for smooth functions of distance to the historical border, and Lon_u is a unit's longitude coordinate.²⁰ I also include the vector \mathbf{X}_i of individual-level controls (age, age squared, and a female indicator) and the survey-year fixed effect δ_t .

The coefficient τ identifies the effect of historical assignment to the migrant-sending region instead of the restricting one. The motivating idea is that because the border between them was arbitrary, Portuguese colonial officials quasi-randomly allocated the territory around it to one of the two migration policies. In the main text, I estimate this effect using a linear RD polynomial estimated separately on each side of the border with a triangular weighting kernel (Gelman and Imbens, 2019). I define the set B_{MSE}^* containing the units in the sample using the Calonico, Cattaneo and Titiunik (2014) mean-squared error (MSE) optimal bandwidth. Because these lengths vary across outcomes, I also estimate results using a constant bandwidth of 125 km, which is approximately the average across all in the main text. For inference, I cluster standard errors by u and also use the wild cluster bootstrap to ensure the small number of units does not overstate the results' precision (Cameron, Gelbach and Miller, 2008). In addition, I calculate

²⁰ Including longitude is important in RD designs to capture east-west trends (Kelly, 2021). Distance_u has a near-perfect correlation with latitude ($\rho > 0.99$), so it accounts for north-south trends.

Conley standard errors allowing for arbitrary spatial correlation between observations within 100 km of each other using a Bartlett kernel (Conley, 1999; Colella et al., 2019).

To address the low density of clusters near the border, I complement the RD results with the Cattaneo, Frandsen and Titiunik (2015) randomization inference procedure, the motivation for which is precisely this scenario. Specifically, I permute the MigrantSending_u values of up to the 5 closest units on each side of the border for which balance on the share female cannot be rejected ($p \ge 0.15$), regress the outcome on the permuted treatment indicator, and calculate sharp p-values as the share of t-statistics that are greater in absolute value than the observed one. The basic estimating equation is

$$y_{i,u} = \alpha + \tau \text{MigrantSending}_u + \epsilon_{i,u} \text{ for } u \in B_{\text{RI}},$$
 (2)

where B_{RI} denotes the set of up to 5 units on each side.

4.2.1. Biases in Estimation

Because the displacement of DHS clusters mentioned above is random, it induces classical measurement error in the running variable. As such, it biases the RD coefficients toward zero. Additionally, in the census data, there are administrative posts that combine observations from both regions. Because the centroids of units entirely within one region are too far from the border to allow the calculation of MSE-optimal bandwidths on their own, I keep those with area on both sides in the sample. The likely result is a bias toward results of smaller magnitudes when using the census data, as combining treatment and control observations should mask their differences.

4.3. Balance on Precolonial and Geographic Traits and Disease Suitability

The assumption underlying the RD design is that all other relevant factors changed smoothly at the migration policy border. To help rule out discontinuities in precolonial characteristics, Appendix C1 shows that the border is entirely within one Murdock (1959) ethnic homeland. Additionally, the neighboring ethnicities are in the broader Shona-Thonga cultural group, suggesting that important behaviors and characteristics were not substantially different across neighboring ethnic homelands at the time that the border was created. To test whether aspects of the geographic and disease environments changed along the border, I divide Mozambique into 0.25 × 0.25 degree cells – approximately 25 km × 25 km in the study area (see Appendix C2) – and estimate a version of equation (1) without individual-level variables and clustering standard errors by administrative post. In addition, I modify the randomization inference procedure to include up to the 25 closest cells on each side of the border for which balance on longitude cannot be rejected ($p \ge 0.15$). Consistent with the border being arbitrary, Table 1 shows that changes in these variables just inside the migrant-sending region are small relative to restricting-region means.²¹

²¹ The one exception is for rainfall in Panel A Column (2). However, the RD plots in Appendix C₃ show that the estimate is an artifact of very high values at the end of the RD bandwidth in the restricting region.

Table 1: Geographic Traits and Disease Suitability

	Geographic Traits				Disease Suitability	
	Elevation (1)	Rainfall (2)	Slope (3)	Soil Index (4)	Malaria (5)	TseTse (6)
Panel A. Optimal Bandwidth						
Sending Region	9.92	25.27	0.018	3.80	-0.212	0.001
	(29.81)	(10.59)	(0.084)	(6.14)	(0.349)	(0.007)
	[26.89]	[11.11]	[0.050]	[3.86]	[0.252]	[0.005]
Observations	248	206	192	151	151	133
Clusters	53	38	36	27	27	23
Bandwidth	208.6	176.7	161.2	121.4	120.2	96.9
Wild Cluster Bootstrap <i>p</i> -value	0.74	0.03	0.79	0.33	0.62	0.86
Restricting Region Mean	190.8	94.24	0.197	50.54	10.70	1.254
Restricting Region SD	153.0	99.81	0.158	15.29	2.18	0.082
Panel B. Constant Bandwidth						
Sending Region	-0.426	6.63	0.013	3.93	-0.230	-0.001
	(31.10)	(7.62)	(0.099)	(6.15)	(0.355)	(0.008)
	[22.03]	[6.42]	[0.054]	[3.89]	[0.260]	[0.006]
Observations	168	168	161	168	168	166
Clusters	29	29	28	29	29	28
Bandwidth	125	125	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.99	0.43	0.86	0.29	0.57	0.95
Restricting Region Mean	172.7	72.11	0.180	51.36	10.83	1.260
Restricting Region SD	108.2	80.29	0.129	15.12	2.13	0.079
Panel C. Randomization Inference						
Sending Region	7.68	-9.44	0.035	-0.600	-0.242	-0.011
	{0.80}	{0.34}	{0.61}	{0.90}	{0.34}	{o.77}
Observations	50	50	46	50	50	48
Window	-42, 35	-42, 35	-42, 35	-42, 35	-42, 35	-42, 35
Restricting Region Mean	172.5	36.69	0.191	44.24	11.10	1.232
Restricting Region SD	108.2	80.29	0.129	15.12	2.13	0.079

Notes: Observations are 0.25×0.25 degree cells. In Panels A and B, standard errors clustered by administrative post are in parentheses and Conley standard errors using a 100-km bandwidth and a Bartlett kernel are in brackets. Regressions estimate a local linear RD specification on each side of the border using a triangular kernel and include longitude as a control. RD bandwidths in Panel A are MSE-optimal. In Panel C, sharp p-values are in curly braces, and the samples include up to the 25 closest cells on each side of the border for which balance on longitude cannot be rejected ($p \ge 0.15$). Means and standard deviations are calculated using observations within the RD bandwidth or randomization inference window. Outcomes are averages within a cell of elevation in meters (Danielson and Gesch, 2011), rainfall in mm (Schneider et al., 2020), slope in degrees (World Bank, 2020), an index of soil suitability for 16 food and energy crops from 1981 to 2010 (Zabel, Putzenlechner and Mauser, 2014), an index of malaria transmission stability Kiszewski et al. (2004), and an index of tsetse fly suitability (Alsan, 2015).

4.4. HIV Prevalence

I then turn to the main outcomes of interest in this paper. The first is the present-day spatial distribution of HIV among adults along the former border, measured as the results of blood tests for the virus taken by a randomly selected subset of DHS respondents in 2009 and 2015. I focus on adults aged 15 to 64 because, given the historical treatment, my interest is in the effects on anyone who was ever sexually active, not just those who were at the time of the survey. Table 2 Panel A Column (1) pools both sexes and shows that adult HIV prevalence drops 11 p.p. just inside the former sending region, and Figure 5a shows this discontinuity visually. This point estimate is large relative to 22 percent prevalence in the restricting region.²² In addition, the wild cluster bootstrap *p*-value suggests that its statistical significance is not due to false precision. I also split the sample by sex in Columns (2) and (3) and find similar effects, but the low number of clusters for the male estimate make those standard errors artificially small.

The magnitudes and significance of the results are effectively unchanged when using the constant bandwidth in Panel B, though the additional clusters make the standard errors for men more accurate. In Panel C, the randomization inference estimates are slightly smaller in absolute and relative terms – a 7.8-p.p. decrease in HIV at the border, or 40 percent of the restricting region's mean – while having similar *p*-values. To complement these results, Figure 5b shows HIV prevalence within the randomization inference window by 10-year age group, each of which has lower rates in the former sending region. It is most apparent for ages 25 to 34, when HIV prevalence peaks in the former restricting region. As such, these age profiles are consistent with a transmission cycle driven by age-disparate relationships (de Oliveira et al., 2017): prevalence should peak at a lower level and in an older group if partner age gaps (and thus transmission from high-prevalence older men to young women) are lower. In the next section, I examine this and other potential channels and discuss whether they could generate the HIV effects above.

4.5. Economic Development

Next, I examine economic development along the border. The outcomes of interest are an asset ownership score (measured in 2009, 2011, 2015, and 2018) and years of schooling (2009, 2011, and 2015).²³ Table 2 Panel A Columns (4) through (6) present these results.²⁴ They show that the asset score and female schooling are slightly higher while male schooling is slightly lower just inside the former migrant-sending region, but these differences are mostly small and indistinguishable from zero. However, when using the wider constant bandwidth in Panel B, the first two results flip signs and the decrease at the border in the asset score approaches statistical significance.

²² However, note that prevalence is a stock, not a flow, and even small differences in transmission rates can lead to large differences in the size of an epidemic (e.g., Viboud, Simonsen and Chowell, 2016).

²³ The score is the first principal component of a principal component analysis of household assets.

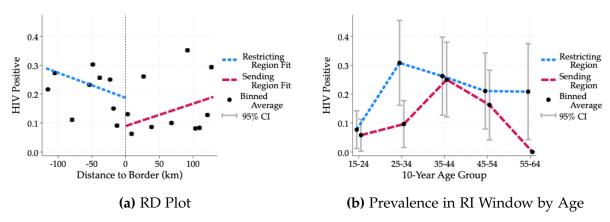

²⁴ As these measures were recorded for almost all DHS respondents within a survey-year – not just a randomly selected subset – and in more survey-years, the numbers of observations are much greater and the bandwidths are generally much shorter than for the HIV results.

Table 2: HIV and Development Outcomes

	F	HIV Positiv	re	Assets	Schooling	
	Pooled (1)	Women (2)	Men (3)	Pooled (4)	Female (5)	Male (6)
	(1)	(-)	(3)	(4)	(3)	(0)
Panel A. Optimal Bandwidth						0
Sending Region	-0.110	-0.097	-0.137	0.129	0.341	-0.078
	(0.045)	(0.053)	(0.089)	(0.158)	(0.273)	(0.580)
	[0.032]	[0.040]	[0.098]	[0.192]	[0.258]	[0.653]
Observations	918	610	224	2,102	1,264	1,039
Clusters	23	23	15	19	27	28
Bandwidth	139.7	136.0	99.5	48.8	91.2	96.5
Wild Cluster Bootstrap <i>p</i> -value	0.05	0.13	0.31	0.74	0.25	0.91
Restricting Region Mean	0.215	0.214	0.198	-0.351	2.49	3.23
Restricting Region SD				0.465	2.66	3.05
Panel B. Constant Bandwidth						
Sending Region	-0.103	-0.087	-0.126	-0.210	-0.003	-0.445
	(0.050)	(0.055)	(0.065)	(0.119)	(0.253)	(0.497)
	[0.037]	[0.042]	[0.063]	[0.117]	[0.249]	[0.533]
Observations	860	563	297	5,076	1,899	1,478
Clusters	21	21	21	45	40	40
Bandwidth	125	125	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.07	0.16	0.17	0.13	1.00	0.49
Restricting Region Mean	0.215	0.214	0.217	-0.341	2.45	3.16
Restricting Region SD				0.576	2.60	2.94
Panel C. Randomization Inference						
Sending Region	-0.078	-0.067	-0.100	-0.069	-0.253	-0.366
0 0	{0.03}	{0.19}	{0.13}	{0.04}	{0.29}	{o.18}
Observations	427	278	149	609	455	371
Clusters	10	10	10	6	10	10
Window	-38, 66	-38, 66	-38, 66	-21, 9	-28, 18	-28, 18
Restricting Region Mean	0.197	0.188	0.214	-0.402	2.30	3.04
Restricting Region SD				0.385	2.40	2.56

Notes: In Panels A and B, standard errors clustered by DHS survey cluster are in parentheses and Conley standard errors using a 100-km bandwidth and a Bartlett kernel are in brackets. Regressions estimate a local linear RD specification on each side of the border using a triangular weighting kernel and include age, age squared, a female indicator, longitude, and year fixed effects as controls. RD bandwidths in Panel A are MSE-optimal. In Panel C, sharp p-values are in curly braces, and the samples include up to the 5 closest clusters on each side of the border for which balance on the share female cannot be rejected ($p \ge 0.15$). Means and standard deviations are calculated using observations within the RD bandwidth or randomization inference window.

Figure 5: HIV Prevalence RD Plot and Age Profile within RI Window

Notes: The left graph shows the average share of HIV-positive blood tests in each bin after adjusting for age, age squared, longitude, and fixed effects for sex and year. The running variable is a DHS survey cluster's distance to the historical border. The linear fits on each side are estimated using a triangular kernel and the RD bandwidth is MSE-optimal. The right graph shows HIV prevalence within the randomization inference window by 10-year age group on each side of the border.

Taken alongside the smaller but significant negative estimate in Panel C and the null schooling effects, these results provide little evidence of discontinuous changes in living standards at the border. Indeed, if anything, they very weakly suggest that development outcomes are worse just inside the former migrant-sending region, so poverty should not explain the HIV result.

4.6. Robustness and Credibility

Given the low density of clusters along the border, I view randomization inference as the best robustness test. Nonetheless, for the HIV results, I also show point estimates and confidence intervals for a range of bandwidths when using linear (Appendix D1) and quadratic RD polynomials (Appendix D2) and when varying the weighting kernel, polynomial, and bandwidth selection method (Appendix D3). The results are unstable when using shorter bandwidths due to the low number of clusters, but for the most part they converge to the results above.²⁵ I also collapse the data into cluster-level means and perform the same estimation in Appendix D4 and find similar patterns as when using the individual-level data. In addition, I vary the number of clusters that are included in the randomization inference window in Appendix D5. Generally, it takes about 5 survey clusters on each side for sharp *p*-values to approach or achieve statistical significance, though the estimates usually reach comparable magnitudes before that point.

To enhance the credibility of the results, I also conduct a series of placebo tests. In Appendix D6, I move the border 5 clusters into each region and switch the observed treatment status of those closest to the true cutoff. Especially for the pooled and male samples, the placebo

²⁵ The main exceptions are when using a quadratic RD polynomial and the coverage error rate optimal bandwidth: the former leads to very wide confidence intervals (especially below 100 km) and the latter leads to bandwidths around 100 km (only 15 clusters).

effects for HIV are of smaller magnitudes and no sharp *p*-value reaches statistical significance, whereas those for development outcomes are mostly larger and sometimes have smaller sharp *p*-values than those in Table 2. To help rule out that these results are driven by the effect of colonial concessions more generally rather than features unique to this border, in Appendix D7 I replicate Table 2 for the Niassa Company border. Consistent with the latter interpretation, the same patterns do not arise in these results, all but one of which are statistically insignificant.

Lastly, I study whether respondent refusal to participate, differential HIV treatment, or choices of outcome can explain the results above. I examine in Appendix D8 if refusing blood tests (as in Lowes and Montero, 2021b) or detecting blood-based biomarkers for antiretroviral (ARV) drugs are more common on one side of the border. For both, there is no evidence of substantive differences, and refusal rates are negligible in the study area. I also use other sources of development-relevant data to test whether they yield the same null results as outcomes from the DHS. I find that it is indeed the case for nighttime lights and population density in Appendix D9 (see Appendix C4 for maps) as well as human capital and migration outcomes using census data in Appendix D10 (literacy, having any schooling, and residing in one's district of birth).

5. Proximate Causes

I now examine what explains the decrease in HIV prevalence just inside the former sending region, focusing first on factors related to the history of southern Mozambique and the model discussed previously. Table 3 reports RD and randomization inference estimates for age-disparate relationships and Figure 6 presents the corresponding graphical evidence. In brief, these partner age gaps are substantially smaller on the former migrant-sending side, and they can explain between one-fifth of and the entire discontinuous change in HIV rates at the border.

5.1. Age-Disparate Relationships

To examine present-day age disparities between spouses and sexual partners, I again use the DHS and 2007 census datasets. The outcome of interest in the former is the age gap between a respondent of reproductive age (15 to 49) and their most recent sexual partner, measured as the man's age minus the woman's.²⁶ I winsorize this outcome at 90 percent due to extreme outliers at both ends of the distribution. In the census data, I examine age gaps between women of any age and their husbands, more closely linking the model and present-day outcomes but at the cost of a likely downward bias (see Section 4.2.1). I also winsorize this outcome at 90 percent.

Table 3 Panel A reports the results for age-disparate relationships using the MSE-optimal RD bandwidths. Columns (1) through (4) show a consistent 2-year decrease in these partner age gaps just inside the former sending region for all adults in the DHS data as well as only those who are

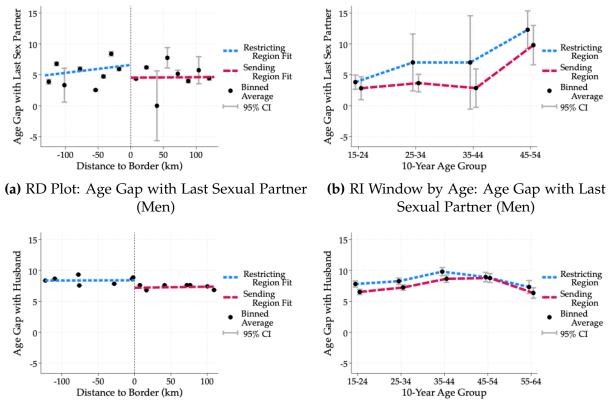

²⁶ Ninety-six percent of women and 89 percent of men in the DHS reported their most recent sexual partner was a spouse or boyfriend/girlfriend, implying that respondents would know this person's age.

Table 3: Age-Disparate Relationships

Male-Female Age Gap with:		Spouse			
	Wome	Women 15-49		15-49	Women
	All	Married	All	Married	
	(1)	(2)	(3)	(4)	(5)
Panel A. Optimal Bandwidth					
Sending Region	-2.20	-1.84	-2.22	-2.23	-0.82
	(0.82)	(0.78)	(0.87)	(1.16)	(0.29)
	[0.63]	[0.71]	[0.96]	[1.41]	[0.22]
Observations	218	281	221	150	11,134
Clusters	14	22	41	35	18
Bandwidth	65.4	94.1	133.1	132.6	144.5
Wild Cluster Bootstrap <i>p</i> -value	0.12	0.05	0.10	0.21	0.05
Restricting Region Mean	7.34	6.91	5.58	7.02	8.36
Restricting Region SD	5.45	4.99	4.71	5.03	6.49
Panel B. Constant Bandwidth					
Sending Region	-1.39	-1.40	-2.25	-2.34	-0.76
	(0.72)	(0.82)	(0.92)	(1.22)	(0.30)
	[0.68]	[o.83]	[1.00]	[1.44]	[0.24]
Observations	480	391	208	144	7,361
Clusters	30	30	38	32	14
Bandwidth	125	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.13	0.13	0.08	0.19	0.09
Restricting Region Mean	6.84	6.95	5.74	7.00	8.38
Restricting Region SD	5.00	5.03	4.69	4.95	6.59
Panel C. Randomization Inference					
Sending Region	-1.946	-1.930	-1.681	-1.709	-1.020
	{0.03}	{0.10}	{o.14}	{0.14}	{0.00}
Observations	120	104	85	86	5,245
Clusters	10	10	10	10	10
Window	-28, 18	-28, 18	-28, 28	-46, 39	-77, 77
Restricting Region Mean	7.66	7.61	6.76	7.10	8.34
Restricting Region SD	5.60	5.86	5.00	5.39	6.71

Notes: In Panels A and B, standard errors clustered by DHS survey cluster or administrative post are in parentheses and Conley standard errors using a 100-km bandwidth and a Bartlett kernel are in brackets. Regressions estimate a local linear RD specification on each side of the border using a triangular weighting kernel and include age, age squared, longitude, and year fixed effects as controls. RD bandwidths in Panel A are MSE-optimal. In Panel C, sharp *p*-values are in curly braces, and the samples include the 5 closest clusters or administrative posts on each side of the border. Means and standard deviations are calculated using observations within the RD bandwidth or randomization inference window.

Figure 6: Partner Age Gap RD Plots and Age Profiles within RI Window

(c) RD Plot: Age Gap with Husband

(d) RI Window by Age: Age Gap with Husband

Notes: The left graphs show the average of the respective partner age gaps in each bin after adjusting for age, age squared, longitude, and year fixed effects. The running variable is a DHS survey cluster's or administrative post's distance to the historical border. The linear fits on each side are estimated using a triangular kernel and the RD bandwidth is MSE-optimal. The right graphs show the average partner age gap within the randomization inference window by 10-year age group on each side of the border.

married. These effect sizes are again quite large, ranging from one-fifth to two-fifths of the mean in the former restricting region, and their statistical significance does not appear to result from a small number of clusters. As expected, the estimate when using the census data in Column (5) is smaller – 0.8 years, or 10 percent of the restricting region mean – but it remains distinguishable from zero. Figures 6a and 6c show the RD plots for corresponding to Columns (3) and (5).

When using the constant bandwidth in Panel B, the estimates for women in Columns (1) and (2) decrease but remain mostly precise while the other results remain unchanged. However, the results in Panel C using the 5 closest survey clusters or administrative posts on each side of the border are more in line with those in Panel A. Figures 6b and 6d show the age profiles of age gaps within the randomization inference windows among all men in the DHS (with last sexual partners) and married women in the census (with husbands). As with HIV, these major risk factors for the virus are much lower across the age distribution in the former sending region.

5.1.1. Robustness and Credibility

As in the previous section, I view the randomization inference results as the best robustness check because of the small number of clusters near the border. Nonetheless, I conduct the same robustness checks as before. For the RD estimates, I use a range of bandwidths with a linear (Appendix E1) and quadratic (Appendix E2) RD polynomial, vary the weighting kernel, polynomial, and bandwidth selection method (Appendix E₃), and collapse the data into survey clusters or administrative posts (Appendix E4). Additionally, I vary the number of survey clusters or administrative posts within the randomization inference window (Appendix E₅). While unstable and noisy with narrow bandwidths (50 to 100 km), the RD estimates are statistically significant with wider bandwidths and consistently negative regardless of length. For the randomization inference, the point estimates are also consistently negative but statistical significance is more common with 12 or fewer units in the window. Nevertheless, I take these results as broadly supporting the robustness of the estimates above. I also conduct the same placebo tests to enhance these results' credibility. In Appendix E6, I shift the true border 5 clusters or administrative posts in each direction and do not find similar results. I also replicate Table 3 along the Niassa Company's former border to rule out a general effect of colonial concessions on these outcomes. Once again, the same consistent patterns do not arise in Appendix E7.

5.2. Risk Factors Associated with Age-Disparate Relationships

While age gaps in relationships can be HIV risk factors on their own, they are also associated with behaviors that promote HIV transmission. These risks include male partners who have had greater numbers of previous sexual partners, an earlier sexual debut for women and girls, not using condoms, and having been forced to have sex, all of which relate to low bargaining power (UNAIDS, UNIFEM and UNFPA, 2004; Schaefer et al., 2017; Evans et al., 2019; Mabaso et al., 2021). In Appendix F1, I compare these outcomes among reproductive-age individuals in the DHS along the former border. In each case, the result suggests that women in the former migrant-sending region face fewer of these associated risks, though some of the magnitudes are quite small and no estimate is statistically significant. As such, age-disparate relationships' indirect effects seem less important than their direct impacts on HIV transmission.

5.3. Other Risk Factors Related to Southern Mozambican History

There are many other ways that the regions' histories might have affected HIV prevalence today. For example, although I did not find any accounts consistent with this hypothesis, it could be that the migrant-sending region has received more investment in its health infrastructure. I test this proposition in Appendix F2 using data from Maina et al. (2019) on the count of public health facilities in each gridcell around the border (see Appendix G1 for a map). However, I find no evidence to support it. Similarly, it is possible that landmines from or violence during the 1977-92

civil war (see Appendix G2 for maps) affected mobility, which can affect the spread of HIV (Iliffe, 2006; Oster, 2012). However, again consistent with the lack of narrative evidence suggesting a link between them and the former border, there are null results for landmines in Appendix F3 as well as violent events and deaths in Appendices F4 and F5.

5.4. Risk Factors Unrelated to Southern Mozambican History

In addition, I examine other important HIV risk factors in Sub-Saharan Africa that, to my knowledge, are not credibly related to the histories of the sending and restricting regions. In particular, I draw from the literature on the virus' spread across the continent and create indicator variables in the DHS data for having a genital ulcer in the past 12 months (Chen et al., 2000), a man having ever paid for sex (Dunkle et al., 2004), and a man having been medically circumcised (Maffioli, 2017). The results in Appendix F6 show that none of these outcomes point in the direction of lower HIV prevalence in the former migrant-sending region. Indeed, the only statistically significant result is for genital ulcers, but it implies a greater likelihood of contracting the virus in this area. Therefore, it is unlikely that these factors contribute to the HIV results above.

5.5. Quantifying Channels' Contributions

I first take the simplest approach to assessing the extent to which the HIV effects above could arise from the discontinuity in age-disparate relationships. Specifically, I multiply the size of the change at the border in partner age gaps (1 to 2 years) by the cross-sectional estimate of how much an additional year of male-female age difference raises a young women's risk of contracting HIV in a Southern African country (7 to 10 p.p., according to Evans et al., 2019). With the caveat that the authors' estimates are likely larger than the true causal effects due to selection into such relationships, this back-of-the-envelope exercise implies a discontinuity in HIV rates of 7 to 20 p.p., suggesting an extremely important role in generating the estimates in Table 2.

A more rigorous approach is to use the mediation analysis framework developed by Imai, Keele and Tingley (2010). In brief, this approach decomposes the total effect of a treatment into its direct effect on the outcome and its effect via mediating variables such as the factors examined above. In the RD framework, the first estimating equation is

$$m_{i,u} = \alpha + \tau_1 \text{SendingRegion}_u + f(\text{Distance}_u) + \text{Lon}_u + \mathbf{X}_i \beta + \delta_t + \epsilon_{i,u} \text{ for } u \in B^*_{\text{MSE}},$$
 (3)

where $m_{i,u}$ is the mediating variable and all else is as in equation (1), and the second equation is

$$y_{i,u} = \alpha + \tau_2 \text{SendingRegion}_u + \gamma m_{i,u} + f(\text{Distance}_u) + \text{Lon}_u + \mathbf{X}_i \beta + \delta_t + \epsilon_{i,u} \text{ for } u \in B^*_{\text{MSE}}.$$
 (4)

Substituting equation (3) into equation (4) shows that the total effect of being just inside the former migrant-sending region is $\tau_2 + \gamma \tau_1$, or the sum of its direct impact (τ_2) and that which arises through the mediating variable ($\gamma \tau_1$). I calculate these point estimates and the share of the effect mediated by a variable as well as bootstrapped 90-percent confidence intervals.

In Appendix F7, I examine the contributions of 5 mediating variables for all adults: the asset ownership score, years of schooling, age gap with last sexual partner, having had multiple sexual partners, and having used a condom at last sex.²⁷ Specifically, I use the MSE-optimal bandwidth for equation (4) using observations with non-missing values of the mediating variable of interest (Panel A), the constant bandwidth (Panel B), and the optimal bandwidth using observations with non-missing values of all mediators (Panel C). Across these specifications, the only consistent finding is that partner age gaps contribute 3.2 to 3.3 p.p. (20 to 22 percent) to the HIV discontinuity. Additionally, in Appendices F8 and F9 I show the constant magnitudes of the age disparity results in Panels A and C across a range of RD bandwidths.

6. Historical Channels

Next, I compare the sending and restricting regions during the colonial era with a particular focus on the outcomes discussed in Section 3. Table 4 reports RD and randomization inference estimates using district-level data from the 1940 and 1960 censuses of colonial Mozambique, and Figure 8 presents selected RD plots. The main result is that, as predicted by the model, marriage market outcomes remained substantively different along the border between these regions even two decades after it had been erased. An important implication is that the present-day discontinuity in age-disparate relationships appears to have its roots in the colonial period.

6.1. Data

I digitized district-level summaries of the 1940 and 1960 censuses of colonial Mozambique (Repartição Nacional de Estatística, 1942; Direcção Provincial dos Serviços de Estatística, 1966) and used administrative maps from around these years (Saldanha, 1940; Ministério do Ultramar, 1959) to georeference them. Figures 7a and 7b show maps of these districts in 1940 and 1960 and highlight their centroids. I restrict my focus to the provinces immediately adjacent to the border and exclude their capital cities or the districts containing them.

Data from the 1940 census are the best available regarding the populations living in the sending and restricting regions while the border between them still existed, as it was the first in the colony's history that met basic standards for accuracy (Darch, 1983; Harrison, 1998; Havik, 2013). Nonetheless, the preface to the published summaries notes that insufficient funding and inadequate staffing impacted the data collection process, although there is no mention of the effects being more severe in one region. To address concerns regarding poor coverage in some districts, I exclude those that appear to be extreme outliers (i.e., have values highly distinct from neighboring districts in the same region), likely due to systematic issues with data collection.²⁸

²⁷ Respondents must be in the random subset that took HIV blood tests, making sample sizes smaller.

²⁸ RD plots in the appendices show districts instead of binned averages and highlight excluded outliers.

Legend Legend Province in Sample Province in Sample District District Migration Policy, 1893-1942 Aigration Policy, 1893-1942 ■ Border ■ Border istrict Centroids Restricting Region Restricting Sending Area on Both Sides Sending Region (a) 1940 **(b)** 1960

Figure 7: Historical Districts in Southern Mozambique

Notes: The maps show districts in each region from the respective years that are included in the sample. The shapes denote centroids for districts in the restricting region (blue circles), sending region (red squares), and with area on both sides of the former border in 1960 (yellow triangles).

In a similar vein, the 1960 data allow for the most reliable and longest-run comparison of the two regions during the colonial period. This census took place 18 years after the Mozambique Company's charter ended and it was the last one before the Mozambican War of Independence (1964-74). It thus should not suffer from the kinds of problems that can arise when governments attempt to collect data while participating in internal conflicts (e.g., Barakat et al., 2002). Nonetheless, I take the same approach to extreme outliers as with the 1940 data given the continued potential for inadequate coverage two decades later. Another concern is that, as with administrative posts in 2007 (see Section 4.1), the 1960 district boundaries did not respect the former border between the regions. Therefore, for the three with area on both sides in 1960 – the only ones whose centroids were within 100 km of the border – I assign them to the institution containing their centroids and discuss the effects on the estimation below.

6.2. Empirical Strategy

To examine historical differences between the regions, I estimate the RD specification

$$y_d = \alpha + \tau \text{MigrantSending}_d + f(\text{Distance}_d) + \text{Lon}_d + \epsilon_d \text{ for } d \in B,$$
 (5)

where observations are at the level of district d and are weighted by population, the set B is defined by the sample restrictions above – as there are too few centroids near the border to

estimate MSE-optimal bandwidths – and all else is as in equation (1). Once again, I complement the RD results with the randomization inference procedure that estimates the equation

$$y_d = \alpha + \tau \text{MigrantSending}_d + \epsilon_d \text{ for } d \in B_{\text{RI}},$$
 (6)

where $B_{\rm RI}$ uses up to the 5 closest districts on each side of the border for which balance on longitude cannot be rejected ($p \ge 0.15$). Additionally, as mentioned above, the 3 closest districts to the former border in 1960 have area on both sides of it; to the extent that they combine characteristics of each region, their effect is to mask differences between the two and thus bias point estimates toward zero.²⁹

6.3. Differences between Regions while Border Existed (1940)

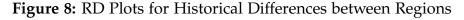
6.3.1. Men's Circular Migration and Women's Agricultural Labor

I first test whether men's circular migration rates were in fact different while the border between the regions existed. The outcome of interest is the share of males aged 15 to 64 ("prime-aged men") who were circular migrants, which I define as those listed in the census as working abroad. Table 4 Panel A Column (1) shows that this measure increased by 20 p.p. just inside the migrant-sending region in 1940. This estimate is precise and over four times greater than the circular migration rate in the restricting region. Additionally, the randomization inference estimate in Panel B is of a similar magnitude, highly significant, and just under twice as large the restricting-region mean within this narrower window. Figure 8a shows this discontinuity visually.

To verify that young men were the primary drivers of this effect, in Appendix H₁ I present RD plots by 10-year age group. As expected, rates declined monotonically with age: while over one-third of men aged 15 to 34 and one quarter of those aged 35 to 44 engaged in circular migration, only 10 percent of men aged 45 to 54 and almost no men aged 55 to 64 did so. As such, these data are consistent with historical accounts and a key assumption of the model in Section 3.

I then examine how men's absences may have affected women's labor. The outcome of interest is the share of prime-aged women who worked "on the land," which most likely corresponded to subsistence agriculture. In Panels A and B, the estimates in Column (2) are negligible in absolute terms and especially so when compared to the near-universal share of women in the restricting region who were in this occupational category. Indeed, as the narrative evidence reference in Section 2 suggested, it may have been women's historical responsibility for food production that enabled men's circular migration in the first place.

6.3.2. Marriage and Fertility


Next, I compare marriage market outcomes along the border, focusing on ages 15 to 34 because men in this range were most heavily involved in circular migration. Specifically, I calculate the

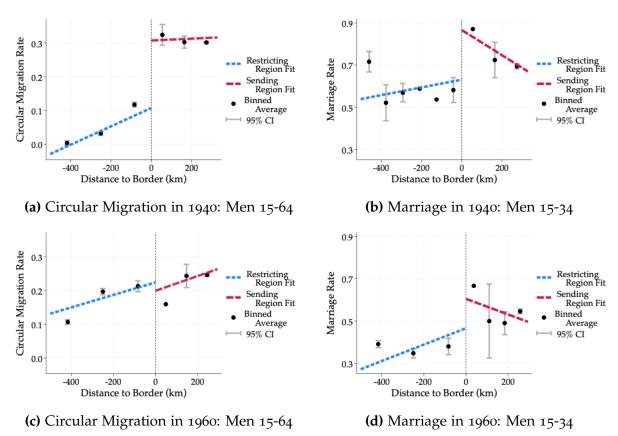

²⁹ I also highlight these districts in the RD plots in the appendices so their influence is clear.

Table 4: Historical Differences between Regions

	Men Migrants (1)	Women Farming (2)	Men Married (3)	Women Married (4)	Children per Woman (5)	Boys in School (6)	Girls in School (7)	
Panel A. 1940: RD Estimates Using All Districts in Sample								
Sending Region	0.200 (0.090) [0.087]	0.016 (0.018) [0.016]	0.234 (0.067) [0.073]	0.039 (0.032) [0.038]	0.157 (0.082) [0.074]	-0.035 (0.016) [0.014]	-0.004 (0.006) [0.005]	
Observations	28	28	27	27	27	28	28	
Bandwidth Restricting Region Mean Restricting Region SD	-503, 329 0.047	-503, 329 0.958	-503, 329 0.583	-503, 329 0.846	-503, 329 0.848 0.144	-503, 329 0.050	-503, 329 0.006	
Panel B. 1940: Randomizati	on Inference							
Sending Region	0.195 {0.01}	-0.008 {0.55}	0.172 {0.03}	0.030 {0.27}	0.087 {0.19}	-0.014 {0.55}	0.009 {0.71}	
Observations Bandwidth Restricting Region Mean Restricting Region SD	10 -223, 218 0.117	10 -223, 218 0.960	10 -223, 219 0.574	10 -223, 219 0.891	10 -223, 219 0.757 0.093	10 -223, 218 0.038	10 -223, 218 0.002	
Panel C. 1960: RD Estimate	es Hsino All	Districts in S	Sample					
Sending Region	-0.025 (0.049) [0.050]	0.006 (0.004) [0.004]	0.138 (0.043) [0.043]	0.042 (0.070) [0.065]	-0.058 (0.085) [0.076]	-0.014 (0.033) [0.029]	-0.034 (0.026) [0.025]	
Observations	27	28	27	27	27	28	27	
Bandwidth Restricting Region Mean Restricting Region SD	-500, 294 0.163	-500, 294 0.997	-500, 294 0.374	-, -500, 294 0.678	-500, 294 0.820 0.121	-500, 294 0.089	-500, 294 0.041	
Panel D. 1960: Randomization Inference								
Sending Region	-0.017 {0.65}	-0.000 {1.00}	0.172 {0.02}	0.056 {0.27}	-0.094 {0.17}	0.022 {0.79}	0.023 {0.61}	
Observations Bandwidth Restricting Region Mean Restricting Region SD	10 -282, 206 0.238	10 -282, 163 0.995	10 -282, 206 0.358	10 -282, 206 0.713	10 -287, 163 0.841 0.083	10 -282, 163 0.085	10 -282, 206 0.055	

Notes: Observations are districts. In Panels A and C, robust standard errors are in parentheses and Conley standard errors using a 100-km bandwidth and a Bartlett kernel are in brackets. Regressions estimate a local linear RD specification on each side of the border using a triangular kernel and include longitude as a control. The left (negative) and right (positive) ends of the RD bandwidth used in each regression are in kilometers. In Panels B and D, sharp p-values are in curly braces, and the samples include up to the 5 closest districts on each side of the border for which balance on longitude cannot be rejected ($p \ge 0.15$). Means and standard deviations are calculated using observations within the RD bandwidth or randomization inference window.

Notes: The graphs show the average of the respective outcomes in each bin after adjusting for longitude. The running variable is a district's distance to the historical border and the linear fits on each side are estimated using a triangular kernel.

share of men and women in this age group who were ever married. While the estimates for men in Column (3) are large and statistically significant in Panels A (23 p.p., or 40 percent of the restricting-region mean) and B (14 p.p., or 24 percent), the analogous estimates for women in Column (4) are very much not. These results suggest that circular migration in fact enabled young men to marry, and under the assumption of women only marrying men of equal or greater age, that the marriage market absorbed these additional young men by matching more similarly-aged couples and reducing the rate of polygyny. While these implications cannot be tested directly, they are in line with the predictions in Section 3. Figure 8b presents the RD plot for young men's marriage rates.

I also examine the ratio of children aged 0 to 4 to women aged 15 to 44, which is the only available measure of fertility in the colonial censuses. In Panel A Column (5), there is a precise estimate of 0.16 additional children per woman (19 percent of the restricting-region mean), but in Panel B it shrinks by almost half (to 0.9, or 11 percent) and it loses statistical significance. Nonetheless, I take these results as providing some evidence for the model's prediction of greater population growth in the sending region before the border with the restricting region was erased.

6.3.3. Boys' and Girls' Schooling

Finally, I examine the rates at which children aged 5 to 14 were listed in the census as being enrolled in school at the time of enumeration. For boys, Panel A Column (6) shows a precisely estimated 3.5-p.p. decrease (70 percent of the restricting-region mean) just inside the migrant-sending region. However, the randomization inference estimate in Panel B is smaller and statistically insignificant (a decrease of 1.4 p.p., or 37 percent). For girls, there are null effects in Column (7) of Panels A and B, which is not surprising given rates of enrollment well below 1 percent. However, as noted in Section 2, an important caveat is that the provision of education differed between these regions through 1942, so both supply- and demand-side factors were at work. But taken alongside the results above, this picture of colonial southern Mozambique is consistent with the gains from circular migration being used for marriage and fertility rather than investment in children's human capital (i.e., quantity over quality).

6.4. Differences between Regions after Border Erased (1960)

I then turn to comparing the 1940 results to those from 1960, nearly two decades after the border between the regions had been erased. The first major difference is that in both Panels C and D, the circular migration estimates in Column (1) have become small and insignificant.³⁰ Figure 8c shows that this change was due to rates having risen sharply in the former restricting region after men's labor mobility was permitted. But despite this convergence, the difference in men's marriage rates in Column (3) remained large and precisely estimated in 1960. Figure 8d shows this continued discontinuity visually.

This combination of migration and marriage results is once again consistent with the predictions in Section 3. The same is true for the other notable difference between the 1940 and 1960 results: namely, that the signs of the estimates in Panels C and D of Column (5) have flipped. While neither is statistically significant, the higher rates of fertility just inside the former restricting region are in line with the large predicted increase in population growth after the first generation in which circular migration became possible.

6.5. Robustness and Credibility

For transparency regarding the exclusion of certain observations, Appendix H₂ contains 1940 RD plots showing individual districts rather than binned averages and highlighting those near the border that I considered extreme outliers. While these choices are subjective, I view these districts as having values substantively different from its immediate neighbors in the same region, plausibly arising from issues with data collection in the colonial period (see Section 6.1). I do

³⁰ The 1960 census summary tables grouped circular migrants into a category with all men who worked in a mine, regardless of location. However, given the small number of mines in southern Mozambique, I consider it an effective measure of working on the Witwatersrand (i.e., circular migration).

the same for the 1960 results in Appendix H₃ and also highlight districts with area on both sides of the former border. To test the robustness of the results above, I focus on the randomization inference estimates given the wide RD bandwidths and very few districts near the border. In Appendices H₄ and H₅, I show the main results in 1940 and 1960 over a range of windows. For migration in 1940 and marriage in both years, the estimated magnitudes remain consistent across window sizes but statistical significance becomes more common once they contain 4 districts on each side of the border. However, none of the fertility estimates is statistically significant. In Appendices H₆ and H₇, I examine the credibility of these results by moving the border 5 districts into each region. With the exception of men's circular migration rates, which varied with distance from South Africa, no pattern above is apparent or statistically significant in these tests. I also rule out differential missionary investments in Appendix H₈.

7. Effects across Southern Africa

Although the RD setup provides internal validity in estimating the causal effects of historical exposure to circular migration, it is not immediately clear that these findings generalize beyond the area around the former border. Indeed, migration's well-established links to better development outcomes (e.g., Dinkelman, Kumchulesi and Mariotti, 2024) and higher HIV prevalence (e.g., Weine and Kashuba, 2012) across Sub-Saharan Africa seem to cast doubt on any claims of external validity. However, circular migration began in a very different way in the rest of Southern Africa, as neighboring areas were exposed to it at the same time but likely to different extents based on proximity to recruitment posts.

The object of interest in the model thus changes to the differences in outcomes on the new BGP as the high-wage share of young men varies. In Appendices B6 and B7, I show that raising this share amplifies the changes described in Section 3: higher-share regions should have higher living standards and less age-disparate relationships. In terms of HIV, assuming that circular migration dominates all other risk factors implies that such areas should have higher prevalence, but the impact on marriage markets should suppress this link. I now examine whether these effects are visible in correlations within migrant-sending areas across Southern Africa, which would suggest that the theory and evidence in the previous sections have broader applicability.

7.1. Data and Empirical Strategy

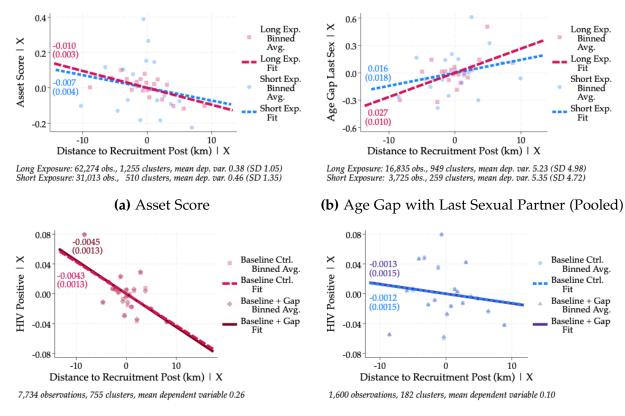
To do so, I use georeferenced DHS data from the five Southern African countries most heavily exposed to WNLA mine labor recruitment in Figure 1: Eswatini (2006), Lesotho (2004, 2009, 2014), Malawi (2004, 2010, 2012, 2015), Mozambique (2009, 2011, 2015), and South Africa (2016). Appendix I1 shows a map of survey clusters in these countries within 25 km of a historical recruitment post. Because Malawi had a much shorter exposure to young men's circular migration to the Witwatersrand gold mines (see the discussion in Dinkelman and Mariotti, 2016), I separate

it from the other countries with the expectation that the relationships should be weaker there.

The key assumption in the analysis that follows is that within an area around a historical recruitment post, greater distance from it implies greater costs to engage in circular migration. I thus use this distance as a proxy for migration rates and estimate

$$y_{i,c,t} = \tau \text{Distance}_c + \mathbf{X}_i \beta + \alpha_{u(c)} \times \mathbf{Z}_c + \gamma_{p(c)} + \delta_t + \epsilon_{i,c,t}$$
 for Distance_c < 25 km, (7)

where $y_{i,c,t}$ is the outcome of interest for individual i in survey cluster c observed in year t, Distance $_c$ is c's distance from the nearest recruitment post p(c), \mathbf{X}_i is a vector of individual-level characteristics (age, age squared, female indicator), $\alpha_{u(c)}$ is a fixed effect for c's first-level administrative unit u(c) interacted with a vector of c's characteristics \mathbf{Z}_c (urban indicator, elevation, quadratic polynomial in latitude and longitude), and $\gamma_{p(c)}$ and δ_t are fixed effects for p(c) and t. I restrict the sample to clusters within 25 km of a recruitment post. The coefficient of interest is τ , which measures the association of an additional kilometer of distance from a post with the outcome examined. Importantly, comparisons are made only between observations within a 25-km area around a recruitment post and after accounting for a rich set of geographic characteristics within each state or province. For inference, I cluster standard errors by DHS survey cluster.


7.2. Asset Ownership and Age-Disparate Relationships

The first outcome of interest is the asset ownership score. Figure 9a shows an added-variable plot of its partial relationship with distance to a recruitment post. While both groups have precisely estimated relationships, as expected it is weaker for Malawi. From a post to the edge of its 25-km catchment in long-exposure countries, the asset score decreases by 0.25 (two-thirds of the mean, or nearly a quarter of a standard deviation), whereas in the short-exposure country it only decreases by 0.18 (38 percent of the mean, or 0.13 standard deviations). Next, I examine the male-female age gap between respondents and their last sexual partners, and Figure 9b presents this added-variable plot. Once again, the estimated magnitude is larger for long-exposure countries: over the 25-km radii, partner age gaps in this group increase by a precisely estimated 0.68 years (13 percent of the mean, or 0.14 standard deviations), but in Malawi, they only increase by an imprecise 0.40 years (7 percent of the mean, or 0.08 standard deviations).

7.3. Suppression of HIV-Migration Link by Age-Disparate Relationships

I then turn to HIV blood tests. In addition to estimating equation (7) with the baseline set of covariates listed above, I also do so after adding partner age gaps as a control to study how its inclusion changes the distance-HIV partial relationship. Figure 9c presents the added-variable plot for the long-exposure countries showing both estimates. With only the baseline controls, HIV prevalence decreases by a precisely estimated 10.8 p.p. (41 percent of the mean) across the 25 km. However, when controlling for partner age gaps, the magnitude increases to 11.3 p.p. (43 percent of the mean). The implication is that while the direct effect of migration strongly

Figure 9: Effects of Circular Migration across Southern Africa

(c) Long-Exposure Countries: HIV (Pooled)

(d) Short-Exposure Country: HIV (Pooled)

Notes: The top graphs are added-variable plots showing the partial effect of distance to a post on the outcome of interest, estimated separately for short- and long-exposure countries. Coefficients are displayed next to the regression lines with standard errors clustered by DHS cluster in parentheses. Regressions control for age, age squared, female sex, fixed effects for year and closest recruitment post, and state- or province-specific effects of urban status, elevation, and a quadratic polynomial in latitude and longitude. The bottom graphs are added-variable plots showing the partial effects of distance to a mine labor recruitment post in a group of countries on HIV prevalence before (dashed lines) and after (solid lines) adding male-female age gaps with last sexual partners to the controls above. All bin widths are set by ventiles of the residualized distance variable for each group within a graph.

increases HIV prevalence, its magnitude is 0.5 p.p. (5 percent) less than it would have been without its marriage market effects. A similar but smaller pattern arises in the added-variable plot for Malawi in Figure 9d – decreases of 3.0 p.p. versus 3.3 p.p. (30 percent of the mean versus 33 percent), or a 0.3-p.p. (8-percent) suppression – but the effects are not precisely estimated.

7.4. Robustness

To test the robustness of these associations, I vary the radii of the catchments around recruitment posts and also log-transform the distance measure. I show in Appendix J1 that the estimated slopes of the regression lines for the asset score and partner age gaps remain almost universally larger in magnitude in the long-exposure countries than in Malawi across these specifications.

Additionally, in Appendix J2, I show that partner age gaps continue to suppress the migration-HIV relationship in both long- and short-exposure countries irrespective of the radius length and whether the distance measure is in levels or logs.

8. Conclusion

In this paper, I study the very long-run effects of one of Africa's largest and longest-lasting circular migration flows on regions of origin. I first develop an OLG model of an economy and marriage market experiencing a shock to young men's wages to generate hypotheses regarding wealth and health outcomes across time. I then test them along an arbitrary border within Mozambique that separated a migrant-sending region from one in which mobility was heavily restricted for a half-century (1893 to 1942). Consistent with the model's implications, I show that there are large decreases in HIV prevalence just inside the former sending region and no differences in development outcomes. Examining proximate causes, I find strong evidence that partner age gaps – a major HIV risk factor in Sub-Saharan Africa – decrease substantially just inside the sending region. This result is in line with the model's suggestion that differences in marriage outcomes should continue even after migration rates converged.

Using data from the colonial period, I show that these marriage market differences appear to have historical roots, as circular migration likely enabled men in the sending region to pay bride prices at much younger ages. Lastly, I return to the model to generate hypotheses more relevant for the rest of Southern Africa, in which exposure began at the same time inside regions around labor recruitment posts but rates of circular migration likely decreased with distance. Looking within areas close to these posts, I find strong evidence of the correlations predicted by the model: higher migration rates are linked to higher wealth, smaller partner age gaps, and higher rates of HIV that are suppressed by these marriage market effects. As such, it suggests that the theory and evidence results in this paper have relevance beyond southern Mozambique.

More broadly, my findings show how circular migration shapes the historical trajectories of regions exposed to it, which is critical to understand as transportation costs decline rapidly around the world. By providing some of the longest-time horizon estimates of African circular migration's effects, this paper has particularly important implications across the continent whose contribution to the global Age of Mass Migration lasted from 1850 to 1960. It also underscores the value of using general equilibrium models to capture the effects of labor institutions across time. In particular, my results show how historical labor market shocks can reverberate into the present through marriage markets, especially the non-Western ones with asset transfers that determine how most of the world marries. They also shed light on circular migration's role in shaping one of the modern world's deadliest pandemics in the region that has been the hardest hit. In this sense, this paper also contributes to our knowledge of disparities in the spatial distribution of HIV and of history as a fundamental determinant of health.

References

- **Abramitzky, Ran, Leah Platt Boustan, and Katherine Eriksson.** 2012. "Europe's Tired, Poor, Huddled Masses: Self-Selection and Economic Outcomes in the Age of Mass Migration." *American Economic Review*, 102(5): 1832–1856. [4]
- Acemoglu, Daron, Simon Johnson, and James A. Robinson. 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation." *American Economic Review*, 91(5): 1369–1401. [4]
- **Alexopoulou, Kleoniki, and Dácil Juif.** 2017. "Colonial State Formation without Integration: Tax Capacity and Labour Regimes in Portuguese Mozambique (1890s-1970s)." *International Review of Social History*, 62(2): 215–252. [4]
- **Allina, Eric.** 2012. *Slavery by Any Other Name: African Life under Company Rule in Colonial Mozambique.* Charlottesville, VA:University of Virginia Press. [2, 8, 9]
- **Alsan, Marcella.** 2015. "The Effect of the TseTse Fly on African Development." *American Economic Review*, 105(1): 382–410. [16]
- **Alsan, Marcella, and Marianne Wanamaker.** 2018. "Tuskegee and the Health of Black Men." *Quarterly Journal of Economics*, 133(1): 407–455. [4]
- **Anderson, Siwan.** 2018. "Legal Origins and Female HIV." *American Economic Review*, 108(6): 1407–1439. [4]
- **Archibong, Belinda, and Nonso Obikili.** 2023. "Prison Labor: The Price of Prisons and the Lasting Effects of Incarceration." NBER Working Paper 31637. [4]
- Ashraf, Nava, Natalie Bau, Nathan Nunn, and Alessandra Voena. 2020. "Bride Price and Female Education." *Journal of Political Economy*, 128(2): 591–641. [4]
- Audet, Carolyn M., Janeen Burlison, Troy D. Moon, Mohsin Sidat, Alfredo E. Vergara, and Sten H. Vermund. 2010. "Sociocultural and Epidemiological Aspects of HIV/AIDS in Mozambique." BMC International Health and Human Rights, 10: 15. [3, 13]
- **Banerjee, Abhijit, and Lakshmi Iyer.** 2005. "History, Institutions, and Economic Performance: The Legacy of Colonial Land Tenure Systems in India." *American Economic Review*, 95(4): 1190–1213. [4]
- Barakat, Sultan, Margaret Chard, Tim Jacoby, and William Lume. 2002. "The Composite Approach: Research Design in the Context of War and Armed Conflict." *Third World Quarterly*, 23(5): 991–1003. [26]
- **Bertocchi, Graziella, and Arcangelo Dimico.** 2019. "The Long-Term Determinants of Female HIV Infection in Africa: The Slave Trade, Polygyny, and Sexual Behavior." *Journal of Development Economics*, 140: 90–105. [4]

- **Cagé, Julia, and Valeria Rueda.** 2016. "The Long-Term Effects of the Printing Press in Sub-Saharan Africa." *American Economic Journal: Applied Economics*, 8(3): 69–99. [110]
- **Cagé, Julia, and Valeria Rueda.** 2020. "Sex and the Mission: The Conflicting Effects of Early Christian Missions on HIV in sub-Saharan Africa." *Journal of Demographic Economics*, 86(3): 213–257. [4]
- Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. 2014. "Robust Non-parametric Confidence Intervals for Regression-Discontinuity Designs." *Econometrica*, 82(6): 2295–2326. [14]
- Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors." *Review of Economics and Statistics*, 90(3): 414–427. [14]
- **Cattaneo, Matias D., Brigham R. Frandsen, and Rocío Titiunik.** 2015. "Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate." *Journal of Causal Inference*, 3(1): 1–24. [3, 15]
- Chen, Cheng Y., Ronald C. Ballard, Consuelo Beck-Sague, Yusuf Dangor, Frans Radebe, Scott Schmid, Judith Weiss, Vaness Tshabalala, Glenda Fehler, Ye Htun, and Stephen Morse. 2000. "Human Immunodeficiency Virus Infection and Genital Ulcer Disease in South Africa." Sexually Transmitted Diseases, 27(1): 21–29. [24]
- **Chiappori, Pierre-André, Murat Iyigun, and Yoram Weiss.** 2009. "Investment in Schooling and the Marriage Market." *American Economic Review*, 99(5): 1689–1713. [4]
- Clarence-Smith, Gervase. 1985. The Third Portuguese Empire, 1825-1975: A Study in Economic Imperialism. Manchester: Manchester University Press. [7]
- Colella, Fabrizio, Rafael Lalive, Seyhun Orcan Sakalli, and Mathias Thoenig. 2019. "Inference with Arbitrary Clustering." IZA Discussion Paper 12584. [15]
- **Conley, T.G.** 1999. "GMM Estimation with Cross Sectional Dependence." *Journal of Econometrics*, 92(1): 1–45. [15]
- **Constant, Amelie F., Olga Nottmeyer, and Klaus F. Zimmerman.** 2013. "The Economics of Circular Migration." In *International Handbook on the Economics of Migration.*, ed. Amelie F. Constant and Klaus F. Zimmerman, 55–74. Northampton, MA:Edward Elgar. [1]
- Corno, Lucia, Nicole Hildebrandt, and Alessandra Voena. 2020. "Age of Marriage, Weather Shocks, and the Direction of Marriage Payments." *Econometrica*, 88(3): 879–915. [4]
- **Crush, Jonathan, Alan Jeeves, and David Yudelman.** 1991. *South Africa's Labor Empire: A History of Black Migrancy to the Gold Mines.* Boulder, CO:Westview Press. [2, 49]

- Danielson, Jeffrey J., and Dean B. Gesch. 2011. "Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010)." U.S. Geological Survey Open-File Report 2011–1073, Reston, VA. [16]
- **Darch, Colin.** 1983. "Notas sobre Fontes Estatísticas Oficiais Referente à Economia Colonial Moçambicana: Uma Crítica Geral." *Estudos Moçambicanos*, 4: 103–125. [25]
- de Haas, Michiel. 2019. "Moving Beyond Colonial Control? Economic Forces and Shifting Migration from Ruanda-Urundi to Buganda, 1920-60." *Journal of African History*, 60(3): 379–406. [1]
- de Haas, Michiel, and Ewout Frankema, ed. 2022. Migration in Africa: Shifting Patterns of Mobility from the 19th to the 21st Century. New York:Routledge. [1]
- **Dell, Melissa.** 2010. "The Persistent Effects of Peru's Mining Mita." *Econometrica*, 78(6): 1863–1903. [4]
- de Oliveira, Tulio, Ayesha B. M. Kharsany, Tiago Gräf, Cherie Cawood, David Khanyile, Anneke Grobler, Adrian Puren, Savathree Madurai, Cheryl Baxter, Quarraisha Abdool Karim, and Salim S. Abdool Karim. 2017. "Transmission Networks and Risk of HIV Infection in KwaZulu-Natal, South Africa: A Community-Wide Phylogenetic Study." The Lancet HIV, 4(1): E41–E50. [3, 13, 17]
- **Dinkelman, Taryn, and Martine Mariotti.** 2016. "The Long-Run Effects of Labor Migration on Human Capital Formation in Communities of Origin." *American Economic Journal: Applied Economics*, 8(4): 1–35. [4, 31]
- **Dinkelman, Taryn, Grace Kumchulesi, and Martine Mariotti.** 2024. "Labor Migration, Capital Accumulation, and the Structure of Rural Labor Markets." NBER Working Paper 32144. [4, 31]
- Direcção Provincial dos Serviços de Estatística. 1966. III Recenseamento Geral da População na Província de Moçambique. Lourenço Marques:Instituto Nacional de Estatística. [25]
- Dunkle, Kristin L., Rachel K. Jewkes, Heather C. Brown, Glenda E. Gray, James A. McIntryre, and Siobán D. Harlowa. 2004. "Transactional Sex among Women in Soweto, South Africa: Prevalence, Risk Factors and Association with HIV Infection." *Social Science & Medicine*, 59(8): 1581–1592. [24]
- Dupas, Pascaline, Camille Falezan, Marie Christelle Mabeu, and Pauline Rossi. 2023. "Long-Run Impacts of Forced Labor Migration on Fertility Behaviors: Evidence from Colonial West Africa." NBER Working Paper 31993. [4]
- Evans, Meredith, Kathryn Risher, Nompumelelo Zungu, Olive Shisana, Sizulu Moyo, David C. Celentano, Brendan Maughan-Brown, and Thomas M. Rehle. 2019. "Age-Disparate Sex and HIV Risk for Young Women from 2002 to 2012 in South Africa." *Journal of the International AIDS Society*, 19(1): 21310. [23, 24]

- Faria, Nuno R., Andrew Rambaut, Marc A. Suchard, Guy Baele, Trevor Bedford, Melissa J. Ward, Andrew J. Tatem, João D. Sousa, Nimalan Arinaminpathy, Jacques Pépin, David Posada, Martine Peeters, Oliver G. Pybus, and Philippe Lemey. 2014. "The Early Spread and Epidemic Ignition of HIV-1 in Human Populations." *Science*, 346(6205): 56–61. [1]
- **Frimmel, Hartwig E.** 2019. "The Witwatersrand Basin and Its Gold Deposits." In *The Archean Geology of the Kaapvaal Craton, Southern Africa. Regional Geology Reviews, ,* ed. Alfred Kröner and Axel Hoffman. Cham, CHE:Springer. [7]
- **Fuller, Charles Edward.** 1955. "An Ethnohistoric Study of Continuity and Change in Gwambe Culture." PhD diss. Northwestern University, Evanston, IL. [9]
- **Gelman, Andrew, and Guido Imbens.** 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs." *Journal of Business & Economic Statistics*, 37(3): 447–456. [14]
- **Gengenbach, Heidi.** 2010. Binding Memories: Women as Makers and Tellers of History in Magude, Mozambique. New York:Columbia University Press. [50]
- **Great Britain Foreign Office.** 1901. "Portuguese Decree, Extending the Concessions Granted to the Mozambique Company Lisbon, December 22, 1893." In *British and Foreign State Papers*, 1896-1897. Vol. 89, , ed. Augustus H. Oakes and Willoughby Maycock, 601–602. London:H.M.S.O. [5]
- **Grosjean, Pauline, and Rose Khattar.** 2019. "It's Raining Men! Hallelujah? The Long-Run Consequences of Male-Biased Sex Ratios." *Review of Economic Studies*, 86(2): 723–754. [4]
- **Guthrie, Zachary Kagan.** 2016. "Forced Volunteers: The Complexities of Coercion in Central Mozambique, 1941-1961." *International Journal of African Historical Studies*, 49(2): 195–212. [10]
- **Guthrie, Zachary Kagan.** 2018. Bound for Work: Labor, Mobility, and Colonial Rule in Central Mozambique, 1940-1965. Charlottesville, VA:University of Virginia Press. [8, 9]
- Harries, Patrick. 1983. "Labour Migration from Mozambique to South Africa; with Special Reference to the Delagoa Bay Hinterland, c. 1862 to 1897." PhD diss. School of Oriental and African Studies, University of London, London. [2, 9]
- Harries, Patrick. 1994. Work, Culture, and Identity: Migrant Laborers in Mozambique and South Africa, c. 1860-1910. Portsmouth, NH:Heinemann. [7, 8, 9]
- Harris, Marvin. 1959. "Labour Emigration among the Moçambique Thonga: Cultural and Political Factors." *Africa*, 29(1): 50–66. [7]
- **Harrison, Graham.** 1998. "Quantos Somos? The Second National Population Census of Mozambique." *Review of African Political Economy*, 25(75): 124–132. [25]

- Havik, Philip J. 2013. "Colonial Administration, Public Accounts and Fiscal Extraction: Policies and Revenues in Portuguese Africa (1900-1960)." *African Economic History*, 41: 159–221. [25]
- **Heblich, Stephan, Stephen J. Redding, and Hans-Joachim Voth.** 2023. "Slavery and the British Industrial Revolution." NBER Working Paper 30451. [1]
- **Helgesson, Alf.** 1994. Church, State and People in Mozambique: An Historical Study with Special Emphasis on Methodist Developments in the Inhambane Region. Uppsala:Swedish Institute of Missionary Research. [9]
- **Iliffe, John.** 2006. *The African AIDS Epidemic: A History*. Athens, OH:Ohio University Press. [10, 13, 24]
- **Imai, Kosuke, Luke Keele, and Dustin Tingley.** 2010. "A General Approach to Causal Mediation Analysis." *Psychological Methods*, 15(4): 309–334. [4, 24]
- Isaacman, Allen, Michael Stephen, Yusuf Adam, Maria João Homen, Eugenio Macamo, and Augustinho Pililão. 1980. ""Cotton Is the Mother of Poverty": Peasant Resistance to Forced Cotton Production in Mozambique, 1938-1961." International Journal of African Historical Studies, 13(4): 581–615. [10]
- Juif, Dácil, and Ewout Frankema. 2018. "From Coercion to Compensation: Institutional Responses to Labour Scarcity in the Central African Copperbelt." *Journal of Institutional Economics*, 14(2): 313–343. [1]
- **Junod, Henri A.** 1912. *The Life of a South African Tribe.* Vol. 1, London:David Nutt. [7, 9]
- **Kelly, Morgan.** 2021. "Persistence, Randomization, and Spatial Noise." UCD Centre for Economics Research Working Paper WP21/25. [14]
- Khanna, Gaurav, Emir Murathanoglu, Caroline Theoharides, and Dean Yang. 2022. "Abundance from Abroad: Migrant Income and Long-Run Economic Development." NBER Working Paper 29862. [4]
- Kiszewski, Anthony, Andrew Mellinger, Andrew Spielman, Pia Malaney, Sonia Ehrlich Sachs, and Jeffrey Sachs. 2004. "A Global Index Representing the Stability of Malaria Transmission." American Journal of Tropical Medicine and Hygiene, 70(5): 486–498. [16]
- **Leclerc-Madlala, Suzanne.** 2008. "Age-Disparate and Intergenerational Sex in Southern Africa: The Dynamics of Hypervulnerability." *AIDS*, 22(suppl. 4): S17–S25. [12]
- **Lowes, Sara, and Eduardo Montero.** 2021*a*. "Concessions, Violence, and Indirect Rule: Evidence from the Congo Free State." *Quarterly Journal of Economics*, 136(4): 2047–2091. [4, 8]
- **Lowes, Sara, and Eduardo Montero.** 2021*b*. "The Legacy of Colonial Medicine in Central Africa." *American Economic Review*, 111(4): 1284–1314. [4, 20]

- **Lucas, Robert E. B.** 1987. "Emigration to South Africa's Mines." *American Economic Review*, 77(3): 313–330. [4]
- **Lucas, Robert E. B.** 2005. *International Migration and Economic Development: Lessons from Low-Income Countries.* Northampton, MA:Edward Elgar. [1]
- Mabaso, Musawenkosi, Lungelo Mlangeni, Lehlogonolo Makola, Olanrewaju Oladimeji, Inbarani Naidoo, Yogandra Naidoo, Buyisile Chibi, Khangelani Zuma, and Leickness Simbayi. 2021. "Factors Associated with Age-Disparate Sexual Partnerships among Males and Females in South Africa: A Multinomial Analysis of the 2012 National Population-Based Household Survey Data." Emerging Themes in Epidemiology, 18: 3. [23]
- **Maffioli, Elisa M.** 2017. "Is Traditional Male Circumcision Effective as an HIV Prevention Strategy? Evidence from Lesotho." *PLOS ONE*, 12(5): e0177076. [24]
- Maina, Joseph, Paul O. Ouma, Peter M. Macharia, Victor A. Alegana, Benard Mitto, Ibrahima Socé Fall, Abdisalan M. Noor, Robert W. Snow, and Emelda A. Okiro. 2019. "A Spatial Database of Health Facilities Managed by the Public Health Sector in Sub Saharan Africa." *Scientific Data*, 6: 134. [23, 90, 100]
- **Michalopoulos, Stelios, and Elias Papaioannou.** 2013. "Pre-Colonial Ethnic Institutions and Contemporary African Development." *Econometrica*, 81(1): 113–152. [1]
- Ministério da Marinha e Ultramar. 1900. "Regulamento do Trabalho dos Indígenas." In Collecção Official de Legislação Portugueza: Anno de 1899. 647–654. Lisboa:Imprensa Nacional. [7]
- Ministério do Ultramar. 1959. "Carta de Moçambique." [25]
- **Morier-Genoud, Eric.** 2019. *Catholicism and the Making of Politics in Central Mozambique,* 1940-1986. Rochester:University of Rochester Press. [9]
- **Murdock, George Peter.** 1959. *Africa: Its Peoples and Their Culture History.* New York:McGraw-Hill Book Company. [15, 64]
- Neil-Tomlinson, Barry. 1977. "The Nyassa Chartered Company: 1891-1929." *Journal of African History*, 18(1): 109–128. [9]
- **Newitt, Malyn.** 1995. *A History of Mozambique*. Bloomington, IN:University of Indiana Press. [5, 6, 7, 9]
- **Nunn, Nathan.** 2008. "The Long-Term Effects of Africa's Slave Trades." *Quarterly Journal of Economics*, 123(1): 139–176. [1]
- Nunn, Nathan. 2020. "The Historical Roots of Economic Development." *Science*, 367(6485): eaaz9986. [4]
- **Oster, Emily.** 2012. "Routes of Infection: Exports and HIV Incidence in Sub-Saharan Africa." *Journal of the European Economic Association*, 10(5): 1025–1058. [24]

- **Pepin, Jacques.** 2011. The Origins of AIDS. New York: Cambridge University Press. [1]
- **Ratha, Dilip, Sanket Mohapatra, and Elina Scheja.** 2011. "Impact of Migration on Economic and Social Development: A Review of Evidence and Emerging Issues." World Bank Policy Research Working Paper 5558. [1]
- **Reniers, Georges, and Rania Tfaily.** 2008. "Polygyny and HIV in Malawi." *Demographic Research*, 19(53): 1811–1830. [13]
- **Reniers, Georges, and Rania Tfaily.** 2012. "Polygyny, Partnership Concurrency, and HIV Transmission in Sub-Saharan Africa." *Demography*, 49(3): 1075–1101. [13]
- **Repartição Nacional de Estatística.** 1942. *Censo da População em 1940.* Vol. 2-5, Lourenço Marques:Imprensa Nacional de Moçambique. [25]
- **Republic of Mozambique.** 2008. Request for an Extension of the Deadline for Completing the Destruction of Anti-Personnel Mines in Mined Areas in Accordance with Article 5, Paragraph 1 of the Convention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-Personnel Mines and on Their Destruction (From March 2009 to March 2014). Anti-Personnel Mine Ban Convention. [91, 101]
- **Rita-Ferreira, A.** 1960. "Labour Emigration among the Moçambique Thonga: Comments on a Study by Marvin Harris." *Africa*, 30(2): 141–152. [7]
- Román, Miguel O., Zhousen Wang, Qingsong Sun, Virginia Kalb, Steven D. Miller, Andrew Molthan, Lori Schultz, Jordan Bell, Eleanor C. Stokes, and Bhartendu Pandey, et al. 2018. "NASA's Black Marble Nighttime Lights Product Suite." Remote Sensing of Environment, 210: 113–143. [67, 77]
- Rose, A., J. McKee, K. Sims, E. Bright, A. Reith, and M. Urban. 2020. *LandScan Global* 2019. Oak Ridge National Laboratory. [67, 77]
- **Ross, Edward Alsworth.** 1925. Report on Employment of Native Labor in Portuguese Africa. New York:The Abbott Press. [8]
- Saldanha, F. 1940. "Carta da Colónia de Moçambique: Segundo a Sua Actual Divisão Administrativa." [25]
- Salem, Ariane, and Awa Ambra Seck. 2023. "En Route: The French Colonial Army, Emigration, and Development in Morocco." Unpublished. [4]
- Schaefer, Robin, Simon Gregson, Jeffrey W. Eaton, Owen Mugurungi, Rebecca Rhead, Albert Takaruza, Rufurwokuda Maswera, and Constance Nyamukapa. 2017. "Age-Disparate Relationships and HIV Incidence in Adolescent Girls and Young Women: Evidence from Zimbabwe." AIDS, 31(10): 1461–1470. [13, 23]
- Schneider, Udo, Andreas Becker, Peter Finger, Elke Rustemeier, and Markus Ziese. 2020. GPCC Full Data Monthly Product Version 2020 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data. Global Precipitation Climatology Center. [16]

- **Smith, Alan K., and Gervase Clarence Smith.** 1985. "Angola and Mozambique, 1870-1905." In *The Cambridge History of Africa*. Vol. 6, , ed. Roland Oliver and G. N. Sanderson, 493–521. Cambridge:Cambridge University Press. [5]
- **START.** 2022. *Global Terrorism Database*, 1970-2020. National Consortium for the Study of Terrorism and Responses to Terrorism. [92, 101]
- **Stichter, Sharon.** 1985. *Migrant Laborers*. Cambridge, UK:Cambridge University Press. [1]
- **Sundberg, Ralph, and Erik Melander.** 2013. "Introducing the UCDP Georeferenced Event Dataset." *Journal of Peace Research*, 50(4): 523–532. [93, 101]
- Tanser, Frank, Till Bärnighausen, Lauren Hund, Geoffrey P. Garnett, Nuala McGrath, and Marie-Louise Newell. 2011. "Effect of Concurrent Sexual Partnerships on Rate of New HIV Infections in a High-Prevalence, Rural South African Population: A Cohort Study." The Lancet, 378(9787): 247–255. [13]
- **Tertilt, Michèle.** 2005. "Polygyny, Fertility, and Savings." *Journal of Political Economy*, 113(6): 1341–1371. [2, 10, 51, 54, 61]
- **Tertilt, Michèle Elizabeth.** 2003. "Polygyny and Poverty." PhD diss. University of Minnesota. [11, 52]
- **Teye, Joseph Koye.** 2022. "Migration in West Africa: An Introduction." In *Migration in West Africa*., ed. Joseph Koye Teye, 3–17. Cham, CHE:Springer. [1]
- **Theoharides, Caroline.** 2020. "The Unintended Consequences of Migration Policy on Origin-Country Labor Market Decisions." *Journal of Development Economics*, 142: 102271. [4]
- **Timaeus, Ian, and Wendy Graham.** 1989. "Labor Circulation, Marriage, and Fertility in Southern Africa." In *Reproduction and Social Organization in Sub-Saharan Africa.*, ed. Ron J. Lesthaeghe, 365–400. Berkeley:University of California Press. [9]
- **Transvaal Chamber of Mines.** 1946. "Map of Southern Africa Showing the Recruiting Systems of the Native Recruiting Corporation and the Witwatersrand Native Labour Association." [47]
- UNAIDS, UNIFEM, and UNFPA. 2004. "Action against AIDS Must Address Epidemic's Increasing Impact on Women, Says UN Report." [23]
- **UN Population Division.** 2022. *World Population Prospects* 2022. United Nations Department of Economic and Social Affairs. [2]
- **Vail, Leroy.** 1976. "Mozambique's Chartered Companies: The Rule of the Feeble." *Journal of African History*, 17(3): 389–416. [5, 9]
- **van Waijenburg, Marlous.** 2018. "Financing the African Colonial State: The Revenue Imperative and Forced Labor." *Journal of Economic History*, 78(1): 40–80. [4]

- **Verhoef, Grietjie.** 2018. "Pre-Colonial Africa: Diversity in Organization and Management of Economy and Society." In *The Palgrave Handbook of Management History*., ed. Bradley Bowden, Jeffrey Muldoon, Anthony Gould and Aldea McMurray. Palgrave Macmillan Cham. [1]
- **Viboud, Cécile, Lone Simonsen, and Geraldo Chowell.** 2016. "A Generalized-Growth Model to Characterize the Early Ascending Phase of Infectious Disease." *Epidemics*, 15: 27–37. [17]
- Wang, Richard J., Samer Al-Saffar, Jeffrey Rogers, and Matthew W. Hahn. 2023. "Human Generation Times across the Past 250,000 Years." *Science Advances*, 9(1): eabm7047. [3, 11, 61]
- **Weine, Stevan M., and Adrianna B. Kashuba.** 2012. "Labor Migration and HIV Risk: A Systematic Review of the Literature." *AIDS and Behavior*, 16(6): 1605–1621. [3, 13, 31]
- **Weinstein, Jeremy M.** 2006. *Inside Rebellion: The Politics of Insurgent Violence.* New York:Cambridge University Press. [10]
- **Wilson, Francis.** 1972. *Labour in the South African Gold Mines,* 1911-1969. New York:Cambridge University Press. [7]
- World Bank. 2020. World Slope Model in Degrees. The World Bank Group. [16]
- Yalcindag, Erhan, Eric Elguero, Céline Arnathau, Patrick Durand, Jean Akiana, Timothy J. Anderson, Agnes Aubouy, François Balloux, Patrick Besnard, and Hervé Bogreau, et al. 2011. "Multiple Independent Introductions of Plasmodium falciparum in South America." Proceedings of the National Academy of Sciences, 109(2): 511–516. [1]
- **Zabel, Florian, Birgitta Putzenlechner, and Wolfram Mauser.** 2014. "Global Agricultural Land Resources: A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions." *PLOS ONE*, 9(12): e114980. [16]

Online Appendix for:

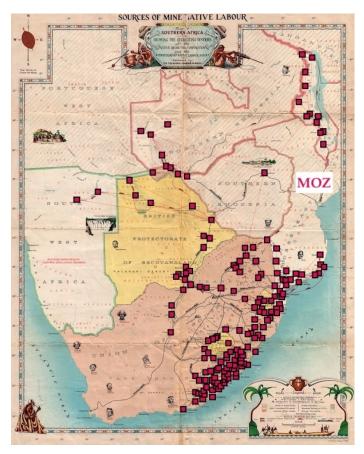
Circular Migration, Marriage Markets, and HIV: Long-Run Evidence from Mozambique

Jon Denton-Schneider

Clark University

April 22, 2024

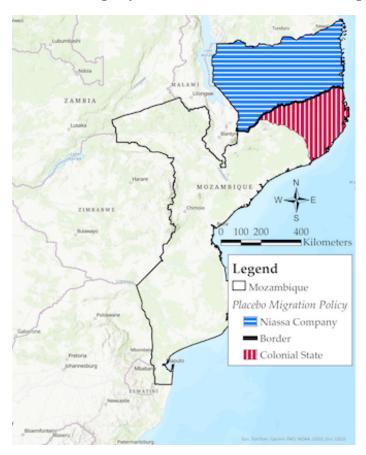
Contents


A	Additional Figures: Historical Overview						
	A1	Witwatersrand Gold Mine Labor Recruitment Posts	47				
	A2	Niassa Company and Colonial State Territories in Northern Mozambique . 48					
	A 3	Average Annual Numbers of Witwatersrand Gold Mine Workers by Country 49					
	A ₄	Administrative Reorganization of Colonial Mozambique	50				
В	OLG Model of the Economy and Marriage Market						
	B1	Model Setup	51 51				
		B1.1 Preferences	51				
		B1.2 Income and Women's Savings	51				
		B1.3 Marriage and Fertility	51				
		B1.4 Men's Choice Problem	52				
		B _{1.5} Marriage Market Clearing and Population Dynamics	52				
		B1.6 Women's Choice Problem	52				
		B1.7 Production and Domestic Capital Market Clearing	53				
		B _{1.8} Definition of Equilibrium	53				
	B2	Baseline Wage Regime: Balanced Growth Path	53				
	Вз	New Wage Regime: First Period	56				
	B ₄	New Wage Regime: Subsequent Transition Periods	58				
		B4.1 Base Step	59				
		B _{4.2} Inductive Step	60				
	B5	Parameter Choices	61				
	B6	New Wage Regime: Balanced Growth Path	62				
	B ₇	Comparative Statics for New BGP	63				
C	Add	litional Figures: Present-Day Effects	64				
		Ethnic Homelands and Cultural Groups	64				
	C ₂	Dividing Area into Gridcells	65				
	C3	Balance Test: RD Plots	66				
	C ₄	Geospatial Measures of Development	67				
D	Rob	ustness Checks: Present-Day Effects	68				
_	D ₁	HIV RD Results: Varying Local Linear Bandwidths	68				
	D ₂	HIV RD Results: Varying Local Quadratic Bandwidths	69				
	D_3	HIV RD Results: Varying RD Parameters	70				
	D_4	HIV and Development RD Results Using Data Collapsed into Clusters	, 72				
	D_5	HIV Randomization Inference: Varying Windows	73				
	D6	HIV and Development Randomization Inference: Placebo Windows	74				
	D_7	Placebo Test: Niassa Company Concession	75				
	D8	HIV Test Refusals and Treatment Biomarkers	76				
	D9	Development Results Using Geospatial Data	77				
	D ₁₀	Development Results Using Census Data	78				

E	Robustness Checks: Proximate Causes					
	Eı	Marriage RD Results: Varying Local Linear Bandwidths	79			
	E 2	Marriage RD Results: Varying Local Quadratic Bandwidths	80			
	E3	Marriage RD Results: Varying RD Parameters				
	E4	Results Using Data Collapsed into Clusters: Marriage	84			
	E5	Marriage Randomization Inference: Varying Windows	85			
	E6	Marriage Randomization Inference: Placebo Windows	87			
	E7	Placebo Test: Niassa Company Concession	88			
F	Additional Results: Proximate Causes 80					
	F1	HIV Risk Factors Associated with Age-Disparate Relationships	89			
	F2	Public-Sector Health Infrastructure	90			
	F ₃	Landmines	91			
	F ₄	Civil War Violence: Global Terrorism Database	92			
	F ₅	Civil War Violence: Uppsala Conflict Data Program	93			
	F6	HIV Risk Factors Not Linked to Southern Mozambican History	94			
	F7	Mediation Analysis of HIV RD Result	95			
	F8	RD Mediation Analysis: Varying Local Linear Bandwidths	96			
	F9	RD Mediation Analysis: Varying Local Linear Bandwidths with Constant				
		Sample	98			
G	Add	itional Figures: Proximate Causes	100			
	G1	Public-Sector Health Infrastructure	100			
	G2	Civil War Violence and Landmines	101			
Н	Rob	Robustness Checks: Historical Channels				
	H1					
	H1 H2	1940 Circular Migration RD Plots by Age Group	102			
	H2	1940 Circular Migration RD Plots by Age Group	102			
		1940 Circular Migration RD Plots by Age Group	102 103			
	H2	1940 Circular Migration RD Plots by Age Group	102 103 104			
	H2 H3	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows	102 103 104 105			
	H ₂ H ₃	1940 Circular Migration RD Plots by Age Group	102 103 104 105 107			
	H ₂ H ₃ H ₄ H ₅	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows 1960 Randomization Inference: Varying Windows	102 103 104 105 107			
	H ₂ H ₃ H ₄ H ₅ H ₆	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows 1960 Randomization Inference: Varying Windows 1940 Randomization Inference: Placebo Windows 1960 Randomization Inference: Placebo Windows	102 103 104 105 107 108			
I	H ₂ H ₃ H ₄ H ₅ H ₆ H ₇ H ₈	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows 1960 Randomization Inference: Varying Windows 1940 Randomization Inference: Placebo Windows 1960 Randomization Inference: Placebo Windows Colonial Missionary Presence	102 103 104 105 107 108			
I	H ₂ H ₃ H ₄ H ₅ H ₆ H ₇ H ₈	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows 1960 Randomization Inference: Varying Windows 1940 Randomization Inference: Placebo Windows 1960 Randomization Inference: Placebo Windows	102 103 104 105 107 108 109			
	H2 H3 H4 H5 H6 H7 H8 Add	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows 1960 Randomization Inference: Varying Windows 1940 Randomization Inference: Placebo Windows 1960 Randomization Inference: Placebo Wind	102 103 104 105 107 108 110 111			
I J	H2 H3 H4 H5 H6 H7 H8 Add	1940 Circular Migration RD Plots by Age Group 1940 RD Plots Showing Excluded Outliers 1960 RD Plots Showing Districts with Area on Both Sides and Excluded Outliers 1940 Randomization Inference: Varying Windows 1960 Randomization Inference: Varying Windows 1940 Randomization Inference: Placebo Windows 1960 Randomization Inference: Placebo Wind	102 103 104 105 107 108 109 110			

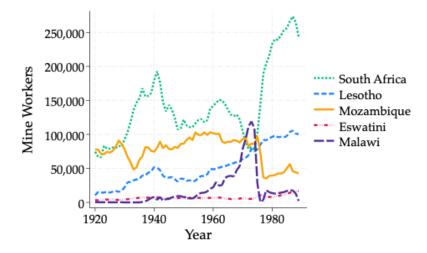
Appendix A. Additional Figures: Historical Overview

A1. Witwatersrand Gold Mine Labor Recruitment Posts


Figure A1: Recruitment Posts across Southern Africa, 1946 [1, 2, 6, 111]

Notes: The map from the Transvaal Chamber of Mines (1946) shows its labor recruitment network, with red squares overlaid on posts' locations. Mozambique is at the eastern edge of the map's middle section and is labeled as MOZ.

A2. Niassa Company and Colonial State Territories in Northern Mozambique


Figure A2: Government-Company Border in Northern Mozambique, 1891-1929 [5]

Notes: The map shows the border between the Niassa Company's chartered concession and territory administered by the colonial state.

A3. Average Annual Numbers of Witwatersrand Gold Mine Workers by Country

Figure A3: Men Working in Witwatersrand Gold Mines, 1920-89 [6, 9]

Notes: The graph shows average annual numbers of Witwatersrand mine workers by country of origin (Crush, Jeeves and Yudelman, 1991).

A4. Administrative Reorganization of Colonial Mozambique

Figure A4: Former Concession Overlaid on New Administrative Boundaries, 1943 [9]

Notes: The map from Gengenbach (2010) shows the footprint of the former Mozambique Company concession in gray overlaid on redrawn administrative boundaries.

Appendix B. OLG Model of the Economy and Marriage Market

B1. Model Setup

The model takes place over infinite discrete time. Individuals are either male (M) or female (F) and the sex ratio at birth is 1. After children are born, their survival depends on parents' choices, which I discuss below. If they do, they live for two periods, young and old ($A \in \{Y, O\}$). Men are fecund for both periods while women can only reproduce when young. The discount factor is $\beta \in (0,1)$.

B1.1. Preferences

Men value consumption and, in this patrilineal society, the continuation of their lineages. Their preferences are represented by the utility function $\log(c_t^{Y,M}) + \beta \log(c_{t+1}^{O,M}) + \gamma \log(f_t^Y + f_{t+1}^O)$, where f^A in a given period is the number of surviving children they have at age A and $\gamma \in (0,1)$ is the importance placed on continuing a lineage. The preference for fertility implies that men must have children but are indifferent as to when they have them. Therefore, this assumption plays a major role in the model: the timing of children is determined entirely by the tradeoff between (discounted) utility from additional consumption and utility from additional surviving children.

In contrast (and in a minor departure from Tertilt, 2005), women only value consumption because children do not join their lineages. Their preferences are represented as $\log(c_t^{Y,F}) + \beta \log(c_{t+1}^{O,F})$. I also assume that if there is no difference between her consumption when single versus when married, she chooses to marry.³¹

B1.2. Income and Women's Savings

One of the two major deviations I make from the author's model is that both young and old men work for an exogenously set wage y^A , analogous to forced labor laws compelling them to work on behalf of European capital. This feature implies that they do not save to consume in old age. In contrast, I maintain the setup of young women working for an endogenously determined wage w_t while old women do not, instead consuming from what they saved and invested in the representative firm when young, s_{t-1}^F . Their investment earns the interest rate $r_t = R_t - \delta$, where R_t is the return to domestic capital and δ is depreciation.

B1.3. Marriage and Fertility

In every period, men and single women enter a frictionless marriage market in which the former demand $n_t^A \ge 0$ wives that each cost the bride price p_t . It is important to note that marriage in this model is solely a method of producing (legitimate) children – there is no intrahousehold bargaining and individuals consume only from their own budgets. As a further simplification, the second major departure I make from Tertilt (2005) is to

³¹ I do so to ensure that women enter the marriage market and are indifferent between potential husbands who can pay the bride price.

give women property rights over themselves – i.e., they decide whether to marry and are paid their bride prices – consistent with the assumption that they also save and invest.³²

However, I preserve the assumption that men make fertility decisions alone by choosing to have $f_t^A \geq 0$ children spread equally across their wives, so each bears $\frac{f_t^A}{n_t^A}$. The cost for all of her offspring to survive childhood is $2\epsilon \left(\frac{f_t^A}{n_t^A}\right)^2$, which is split evenly between her and her husband. As a result, the cost to him of having f_t^A children is $\frac{\epsilon(f_t^A)^2}{n_t^A}$.

B1.4. Men's Choice Problem

Unless young men's wages are sufficiently greater than old men's, they will only marry and have children when old. To see why, note that because of discounting, they need to be able to have a good deal more children when young to justify forgoing present consumption to pay for wives and their offspring's survival. However, if young men's wages exceed this threshold, they will only marry and have children when young.³³ Therefore, if the optimal age for marriage and children is A, the problem for men of that age in period t is represented as

$$\max_{n_t^A, f_t^A \ge 0} \log \left(y^A - p_t n_t^A - \frac{\epsilon(f_t^A)^2}{n_t^A} \right) + \gamma \log(f_t^A), \tag{B1}$$

where the utility from consumption in the other period of their lives drops out because they simply consume their entire budgets.

B1.5. Marriage Market Clearing and Population Dynamics

The size of the young population of a given sex in t is M_t . Assuming that young women choose to marry, equating supply and demand in the marriage market yields

$$\frac{f_{t-1}^{Y}}{2} + \frac{f_{t-1}^{O}}{2\eta_{t-1}} = \eta_t n_t^{Y} + n_t^{O},$$
 (B2)

where $\eta_t = \frac{M_t}{M_{t-1}}$ is the growth in generation size from t-1 to t. Its law of motion is

$$\eta_{t+1} = \frac{f_t^Y}{2} + \frac{f_t^O}{2\eta_t}. (B_3)$$

B1.6. Women's Choice Problem

As the entire value of marriage to men is the ability to have children, men will only demand young women as wives. Therefore, whether a young woman enters the marriage

³² I base this assumption on an earlier version of the author's model (Tertilt, 2003, sec. 7). Importantly, the qualitative results are the same but it leads to higher aggregate savings rates than when parents marry off daughters and receive their bride prices. In that case, young women must pay their share of the cost of children without the addition of the bride price to their budgets, which reduces what they can save.

³³ These statements will be formalized as conditions on parameters below.

market depends on the difference between the bride price and the cost of her fertility given a potential husband's demand for wives and children (denoted as \tilde{n}_t and \tilde{f}_t). If $p_t \geq \frac{\epsilon \tilde{f}_t^2}{\tilde{n}_t^2}$, then she chooses to marry and her problem can be represented as

$$\max_{s_t^F \ge 0} \log \left(w_t + p_t - \frac{\epsilon \tilde{f}_t^2}{\tilde{n}_t^2} - s_t^F \right) + \beta \log \left(r_{t+1} s_t^F \right). \tag{B4}$$

Under this condition on the bride price (i.e., marriage weakly increases her consumption), it is important to note that if population growth is positive and men's wages are such that only old men marry, then each old man has more than one wife. But if the structure of men's wages implies that only young men marry, then all marriages are monogamous. Alternatively, if marriage reduced her consumption, then women would not marry and the middle two terms in her young-age budget would drop out of her problem, but the fact that men would experience infinitely negative utility from failing to continue their lineages implies that this scenario will not occur.

This logic allows for straightforward expressions for two marriage market quantities of interest. The first is the share of marriages that are age-disparate (i.e., young women marrying old men), $D_t = \frac{n_t^O}{\eta_t}$. The other is the average number of brides per man marrying in that period (henceforth "brides per married man"), $B_t = \frac{\eta_t n_t^Y + n_t^O}{\eta_t + 1}$.

B1.7. Production and Domestic Capital Market Clearing

Within the model, output is produced by a representative firm that employs young women. It has the production function $Y_t = AK_t^{\alpha}L_t^{1-\alpha}$, where A is the level of technology, K_t is domestic capital, L_t is labor, and α is capital's share of income. Profit maximization implies that the return to capital and the wage are

$$R_t = \alpha A k_t^{\alpha - 1}, \ w_t = (1 - \alpha) A k_t^{\alpha}, \tag{B5}$$

where k_t is capital per worker. Its law of motion is

$$k_{t+1} = \frac{s_t^F}{\eta_{t+1}}. (B6)$$

B1.8. Definition of Equilibrium

Definition 1. The equilibrium of this economy is defined by the optimal choices for men in (B1) taking prices as given, the marriage market clearing as in (B2), population evolving as in (B3), the optimal choices for women in (B4) taking prices and men's demand as given, the representative firm maximizing profits as in (B5), and the domestic capital stock per worker evolving as in (B6).

B2. Baseline Wage Regime: Balanced Growth Path

The first object of interest is the baseline BGP: an equilibrium satisfying Definition 1 with constant population growth η_1 and domestic capital per worker k_1 under which only old men marry young women. This scenario maps onto the periods prior to the start of

circular migration. The predictions below regarding marriage and fertility closely match those for the polygynous BGP in Tertilt (2005), but they diverge for capital accumulation given the differences in men's production.³⁴

Assumption B1. Young men's wages do not exceed old men's, which are above a certain level:

i.
$$y^{O} \ge y^{Y}$$
.35

ii.
$$y^O > \frac{8\epsilon(1+\gamma)}{\gamma}$$
.

Proposition B1. *In the BGP of this economy under Assumption B1:*

- i. All marriages are age-disparate, as each old man marries $\eta_1 > 1$ young wives.
- ii. The domestic capital stock per worker falls as old men's wages and thus population growth rise, which lowers young women's consumption by reducing their wages but raises old women's consumption by increasing the interest rate.

Proof. For part (i), the first-order conditions for (B1) are $p_t^A = \frac{\epsilon(f_t^A)^2}{(n_t^A)^2}$ – so all young women enter the marriage market – and $f_t^A = \frac{\sqrt{\gamma n_t^A} \sqrt{y^A - p_t^A n_t^A}}{\sqrt{\epsilon} \sqrt{2 + \gamma}}$. These conditions yield a man's choices as functions of the bride price,

$$n_t^A = \frac{\gamma y^A}{2p_t(1+\gamma)}, \ f_t^A = \frac{\gamma y^A}{2\sqrt{\epsilon p_t}(1+\gamma)}.$$
 (B7)

Substituting (B7) into (B2) gives the market-clearing bride price as

$$p_0 = 4\epsilon (\eta_1^A)^2, \tag{B8}$$

which increases with the cost of children's survival and population growth because wives must be compensated for having more expensive or additional children.

Given that men will marry and have children in just one period of adulthood, population growth depends on which age it is. Substituting their demands for children in (B₇) and the bride price in (B₈) into the expression for population growth in (B₃) yields

$$\eta_1^Y = \left(\frac{\gamma y^Y}{8\epsilon(1+\gamma)}\right)^{\frac{1}{2}}, \ \eta_1^O = \left(\frac{\gamma y^O}{8\epsilon(1+\gamma)}\right)^{\frac{1}{3}}.$$
(B9)

³⁴ An interesting nuance is that if the structure of men's wages was such that young men married and old men did not (i.e., if monogamy arose endogenously), capital per worker would be lower in the monogamous BGP than under polygyny, though average consumption would still be higher. The intuition, as discussed when setting up men's choice problem, is that young men would only give up present consumption if they could afford many more children, diluting the capital stock with faster population growth. However, though it is beyond the scope of this paper to study formally, it seems likely that in this model, imposing monogamy (by constraining $n_t^Y + n_{t+1}^O \le 1$) and adding a penalty for women remaining unmarried would reduce fertility and thus increase capital per worker, as the author finds.

³⁵ This assumption is sufficient for part (i) below. It greatly simplifies the presentation and is far more intuitive than one that is necessary and sufficient, which allows wages to strictly decrease with age.

Intuitively, population growth increases as children's survival becomes relatively more affordable, either by increasing old men's wages or decreasing the cost of keeping them alive, and as the importance placed on fertility increases. Nonetheless, at first it seems counterintuitive that the population growth rate would be higher under monogamy (i.e., only young men marrying). But it is important to recall that men will marry when young only if their wages are sufficiently high to have enough children to compensate for reducing their present consumption, leading to faster population growth.

Writing the optimal choices and prices if men marry at a given age (denoted as $A_0 = A$) as functions of population growth gives

$$n_0^Y = \begin{cases} 1 & \text{if } A_0 = Y \\ 0 & \text{if } A_0 = O \end{cases} \quad f_0^Y = \begin{cases} 2\eta_1^Y & \text{if } A_0 = Y \\ 0 & \text{if } A_0 = O \end{cases}$$
$$n_0^O = \begin{cases} 0 & \text{if } A_0 = Y \\ \eta_1^O & \text{if } A_0 = O \end{cases} \quad f_0^Y = \begin{cases} 0 & \text{if } A_0 = Y \\ 2(\eta_1^O)^2 & \text{if } A_0 = O \end{cases}. \tag{B10}$$

With expressions (B8) through (B10), when men marry and have children can be determined by comparing their utilities in each case. To simplify the problem, note that log utility implies a constant share $\frac{1}{1+\gamma}$ of income will be spent on consumption in that period.

It is then straightforward to use properties of logs to show that the first part of Assumption B₁ is sufficient for $A_0 = O$. As all old men and all young women marry in this BGP, every marriage is age-disparate ($D_0 = 1$). The second part of Assumption B₁ implies that population growth is positive, so the number of wives per married (old) man is $B_0 = \eta_1 > 1$.

For part (ii), $p_0 = \frac{\epsilon f_0^2}{\tilde{n}_0^2}$ as shown above, so young women marry and these terms drop out of their problem in (B₄). Therefore, the optimal amount for them to save is $s_0^F = \frac{\beta w_0}{1+\beta}$. Substituting it and the profit-maximizing wage in (B₅) into the expression for capital accumulation in (B₆) yields a stock of capital per young woman of

$$k_1 = \frac{\beta w_0}{(1+\beta)\eta_1} = \left(\frac{\beta(1-\alpha)A}{(1+\beta)\eta_1}\right)^{\frac{1}{1-\alpha}},$$
 (B11)

which decreases with population growth. Put another way, raising men's wages from working for the outside employer lowers the amount of capital per young woman by increasing the size of the generation the representative firm employs.

In terms of consumption, for young men it is their entire budgets $(c_0^{Y,M} = y^Y)$ while for old men it is a constant share $c_0^{O,M} = \frac{y^O}{1+\gamma}$ given log utility. Similarly, young women consume a constant share $c_0^{Y,F} = \frac{w_0}{1+\beta}$, and old women consume what they saved in the previous period plus interest: $c_0^{O,F} = \left(\frac{\beta}{1+\beta}\right)r_1w_0$. These expressions make it clear that young women's consumption moves in the same direction as the capital stock – and thus in the opposite direction of population growth and old men's wages. However,

the opposite is true for old women: it is straightforward to show that $\frac{\partial c_0^{O,F}}{\partial k_1} < 0$, so $\frac{dc_0^{O,F}}{dy^O} = \frac{\partial c_0^{O,F}}{\partial k_1} \cdot \frac{\partial k_1}{\partial \eta_1} \cdot \frac{\partial \eta_1}{\partial y^O} > 0$ given the description of the other partial derivatives above. The implication is that the increase in the interest rate from a smaller capital stock per worker in this period outweighs the decrease in the wages they earned as young women.

B3. New Wage Regime: First Period

The next proposition characterizes what happens to an economy on the baseline BGP after a share μ of young men start to earn much higher wages \hat{y}^{γ} , which is analogous to the first period in which circular migration became possible.³⁶ As I describe below, substantial differences with the baseline BGP emerge in marriage, fertility, and domestic capital accumulation as high-wage young men enter the marriage market, though only this group's average consumption changes in this period.

Assumption B2. Young men's high wages are large enough relative to old men's wages: $\hat{y}^Y > (1+\gamma)y^O$.

Proposition B2. Suppose that the marriage market is in the baseline BGP when a share μ of young men begin to earn wages \hat{y}^Y satisfying Assumption B2. Then in the equilibrium for the first period under this wage regime:

- i. All high-wage young men and all old men marry, raising the bride price and the growth of the population into the next period.
- ii. The share of age-disparate marriages, the number of brides per married man, and next period's domestic capital stock per worker decrease.
- iii. Young men's average consumption rises.

Proof. For part (i), determining whether young men with high wages marry requires comparing utilities across the cases. If they do not, they consume \hat{y}^Y when young and follow the old-age choices in the baseline BGP. If they do, their young-age choices are defined by replacing y^A in (B7) with \hat{y}^Y , and in old age they consume y^O . In this scenario, the marriage market-clearing condition is $\eta_1 = \mu \eta_1 \hat{n}_1^Y + n_1^O$, making the bride price

$$p_1 = p_0 \left(\frac{\mu \eta_1 \hat{y}^Y + y^O}{y^O} \right), \tag{B12}$$

which is more than p_0 in (B8).

It is instructive to examine the above expression. The bride price now equals the cost to a woman of having her husband's baseline optimal number of children (p_0) scaled

³⁶ This subset could be determined by migration costs that decline with idiosyncratic ability and increase strongly with age, yielding a threshold ability level that only some young men exceed. However, as this paper's focus is on the long-run consequences of circular migration rather than the decision to engage in it, for simplicity I take this share as exogenous.

³⁷ Once again, for simplicity and ease of presentation, this assumption is sufficient but not necessary.

by the ratio of the total earnings of men in the marriage market in this period versus in the baseline BGP (the term in parentheses). This scaling factor adjusts the original bride price to account for the increase in the buying power of men demanding wives.

The reason for the bride price increase is that the population growth rate increases, which means that wives must contribute to the survival of more children (and thus must be compensated accordingly). To see why, note that the population law of motion is now $\eta_2 = \frac{\mu f_1^{\gamma}}{2} + \frac{f_1^{\mathcal{O}}}{2\eta_1}$, which yields

$$\eta_2 = \eta_1 \left(\frac{\mu \eta_1 \hat{y}^Y + y^O}{y^O} \right)^{\frac{1}{2}} = \frac{\sqrt{p_1}}{2\sqrt{\epsilon}},$$
(B13)

which is larger than η_1 . In addition, the second equality implies that (B12) can be rewritten as $p_1 = 4\epsilon\eta_2^2 = p_0(\frac{\eta_2}{\eta_1})^2$, which is the same pattern as in (B8) for the baseline BGP.

A young man in this scenario would have $\hat{f}_1^Y = 2\eta_1^2 \left(\frac{\hat{y}^Y}{\sqrt{y^O}\sqrt{\mu\eta_1\hat{y}^Y+y^O}}\right)$ children. Using the constant share of income spent on consumption in the period of marriage along with the properties of logs to compare lifetime utility in each case, it is straightforward to show that Assumption B2 is necessary and sufficient for high-wage men to choose to marry and have children only when young.

For part (ii), with a subset of young men entering the marriage market for the first time, the share of age-disparate marriages will clearly decrease. In particular, it falls from 1 in the baseline BGP to

$$D_1 = \frac{\eta_1^2}{\eta_2^2} = \frac{y^O}{\mu \eta_1 \hat{y}^Y + y^O},\tag{B14}$$

which equals the proportion of husbands' total buying power that is due to old men. Additionally, the average number of wives per married man decreases from η_1 to

$$B_1 = \frac{\eta_1}{\mu \eta_1 + 1}. (B15)$$

There are no changes to the setup of the woman's problem, firm profit maximization, or capital accumulation. Therefore, $s_1^F = \frac{\beta w_1}{1+\beta}$ and the next period's capital stock per worker is

$$k_2 = \frac{\beta(1-\alpha)Ak_1^{\alpha}}{(1+\beta)\eta_2} = k_1 \left(\frac{\eta_1}{\eta_2}\right) = k_1 \left(\frac{y^O}{\mu\eta_1\hat{y}^Y + y^O}\right)^{\frac{1}{2}},\tag{B16}$$

which is less than k_1 in (B11). Intuitively, it will shrink by exactly the factor by which the population growth rate increases.

For part (iii), given these changes, the average level of consumption among young men increases to $\bar{c}_1^{Y,M} = \frac{\mu \hat{y}^Y}{1+\gamma} + (1-\mu)y^Y$, which is greater than $c_0^{Y,M}$ due to the first part of Assumption B1 and Assumption B2. In contrast, old men's consumption in this

period does not change $(c_1^{O,M}=c_0^{O,M})$ because all of them continue to marry and spend a constant share of their wages on consumption. Additionally, next period's capital stock has no effect on women's consumption in this period, so $c_1^{A,F}=c_0^{A,F}$, $A\in\{Y,O\}$.

B4. New Wage Regime: Subsequent Transition Periods

I now examine the economy's continued adjustment to the new wage regime across subsequent periods. It turns out that there are substantive differences between these periods' equilibria and the one in the first period after the shock to young men's wages, which are driven by last period's high-wage young men refraining from entering the marriage market in old age.

Assumption B3. High wages for young men are not too large relative to old men's wages, and domestic capital's share of income is above a certain level but below one-half:

i.
$$\hat{y}^Y < y^O(\frac{1}{\mu\eta_1})\left(\frac{(1-\mu)^2}{(1-\mu\eta_1)^2} - 1\right)$$
.

ii.
$$\frac{\log \left(\mu \eta_1 \hat{y}^Y + y^O\right) - \log \left(\mu \eta_1 \hat{y}^Y + (1 - \mu)(\frac{\eta_1}{\eta_2}) y^O\right)}{\log \left(\mu \eta_1 \hat{y}^Y + y^O\right) - \log (y^O)} < \alpha < \frac{1}{2}.38$$

Proposition B3. Suppose that the economy in $t \ge 2$ has proceeded t-1 periods since the μ share of young men began to earn high wages ("the first period"). If Assumption B3 holds, then in the equilibrium for t:

- i. For even-numbered periods t = 2m and odd-numbered periods t = 2m + 1 (where $m \in \mathbb{Z}^+$), this period's bride price and population growth into next period follow the patterns
 - $p_0 < p_{2m} \le p_{2m+2} \le p_{2m+3} \le p_{2m+1} < p_1$
 - $\eta_1 < \eta_{2m+1} \le \eta_{2m+3} \le \eta_{2m+4} \le \eta_{2m+2} < \eta_2$.
- ii. The age-disparate marriage share is lower than in the first period, while the number of brides per married man is above the first period's level but remains below the baseline BGP's.
- iii. Next period's capital per young woman is less than the level set in the first period (k_2) , and the current period's is related to population growth into the next period by
 - $\frac{k_1}{k_m} < \left(\frac{\eta_{m+1}}{\eta_1}\right)^{\frac{1-\alpha}{\alpha^2}}$.39
- iv. Average consumption for young men does not change from the first period, while old men's and old women's are greater. In contrast, young women's is below the first-period level.

Proof. I proceed by induction.

³⁸ Intuitively, this restriction on the lower bound of capital's share of income is quite weak, as the numerator is far smaller than the denominator. For example, under the parameter values in Appendix B5, this threshold is 0.195.

³⁹ This inequality does not have an intuitive explanation but is necessary for showing part (iv).

B4.1. Base Step

For part (i), the first-order conditions in period t=2 for the $1-\mu$ share of old men who begin the period unmarried and the μ share of high-wage young men are as before. The market-clearing condition is thus $\mu \eta_2 \hat{n}_2^Y + (1-\mu)n_2^O = \eta_2$. It yields a bride price of

$$p_{2} = p_{0} \left(\frac{\mu \eta_{1} \hat{y}^{Y} + (1 - \mu) \left(\frac{\eta_{1}}{\eta_{2}} \right) y^{O}}{y^{O}} \right) = p_{0} \left(\frac{\mu \eta_{2} \hat{y}^{Y} + (1 - \mu) y^{O}}{y^{O}} \right) \left(\frac{\eta_{1}}{\eta_{2}} \right), \tag{B17}$$

where the first equality shows that it is greater than p_0 in (B8) but less than p_1 in (B12).

The right-hand side of the second equality in (B17) helps to explain why the bride price falls in this period. The first two terms have the same interpretation as before: the cost of a wife's children in the baseline BGP and the ratio of husbands' total buying power now versus then. The third term multiplies this product by the ratio of young women in the baseline BGP versus in this period. Thus, even though there are more high-wage young husbands (due to population growth), its effect on the bride price is more than offset by last period's high-wage young men not remarrying in old age and the increase in the supply of wives.

The decreasing bride price implies that young women will bear fewer children. Substituting it into the law of motion for the population gives the growth rate as

$$\eta_3 = \frac{\sqrt{p_2}}{2\sqrt{\epsilon}}.\tag{B18}$$

Therefore, it is also higher than η_1 in (B9) and lower than η_2 in (B13). Iterating the bride price and population growth rate forward one period – as the marriage market-clearing condition and population law of motion are written in the same manner as in t=2 – show that these expressions take the same form as in (B17) and (B18), so $p_3 \in (p_2, p_1)$ and $\eta_4 \in (\eta_2, \eta_3)$. Following the same steps for subsequent periods yields $p_0 < p_2 < p_4 < p_5 < p_3 < p_1$ and $\eta_1 < \eta_3 < \eta_5 < \eta_6 < \eta_4 < \eta_2$.

For part (ii), the share of age-disparate marriages in t=2 takes the form of the fraction of husbands' total buying power that is due to old men,

$$D_2 = \frac{(1-\mu)y^O}{\mu\eta_2\hat{y}^Y + (1-\mu)y^O},\tag{B19}$$

as in (B14). It can be shown that $D_2 < D_1$ if and only if $(1 - \mu)\eta_1 < \eta_2$, which is clearly true from part (i). In contrast, the average number of wives per married man increases from the previous period in (B15), though it remains below the baseline BGP level of η_1 . To see the former, note that this period's value is

$$B_2 = \frac{\eta_2}{\mu \eta_2 + 1 - \mu'} \tag{B20}$$

so it is greater than in the first period because $\eta_2 > (1 - \mu)\eta_1$. For the latter, it is straightforward to show that $B_2 < B_0$ if and only if the first part of Assumption B₃

holds. Intuitively, the gap in wages cannot exceed a function of the number of highwage young men in the previous period, which determines both the supply of brides and how many old men enter the marriage market in this period.

For part (iii), the period-3 stock of capital per worker will be

$$k_3 = k_1 \left(\frac{\eta_1}{\eta_2}\right)^{\alpha} \left(\frac{\eta_1}{\eta_3}\right) = k_1^{1-\alpha} k_2^{\alpha} \left(\frac{\eta_1}{\eta_3}\right),$$
 (B21)

which is less than k_2 in (B16) if and only if $\frac{\eta_1}{\eta_3} < \left(\frac{\eta_1}{\eta_2}\right)^{1-\alpha}$. It can be shown that the first inequality in the second part of Assumption B3 is necessary and sufficient for this condition to be true. An implication is that $\frac{k_1}{k_2} < \left(\frac{\eta_3}{\eta_1}\right)^{\frac{1-\alpha}{\alpha^2}}$: this base-step version of the second statement in part (iii) holds if and only if $\frac{\eta_1}{\eta_3} < \left(\frac{\eta_1}{\eta_2}\right)^{\frac{\alpha^2}{1-\alpha}}$, which is true because $\alpha < \frac{1}{2}$ in the second part of Assumption B3 gives $\frac{\alpha^2}{1-\alpha} < 1-\alpha$. For part (iv), young men's average consumption does not change from the first permitted that the second part of Assumption B3 gives $\frac{\alpha^2}{1-\alpha} < 1-\alpha$.

For part (iv), young men's average consumption does not change from the first period because their decisions remain the same, so $\bar{c}_2^{Y,M} = \bar{c}_1^{Y,M}$. However, now that old men who earned high wages in the previous period refrain from entering the marriage market, this segment of the population consumes their entire budgets. Thus, old men's average consumption increases to $\bar{c}_2^{O,M} = \left(\frac{y^O}{1+\gamma}\right)(1+\gamma\mu) > c_1^{O,M}$. The decrease in the capital stock per worker lowers consumption for young women because $w_2 < w_1$. However, for old women, consumption increases from the first period to period 2 because $r_2 > r_1$ but their wage in the previous period was still w_1 .

B4.2. Inductive Step

Suppose that the hypothesis is true for t=j. I show that it holds for t=j+1 as well. For part (i), the bride price in the next period takes the same form as in (B17) but with η_{j+1} replacing η_2 . This expression is clearly larger than p_0 but smaller than p_1 , as $\eta_{j+1} < \eta_2$ in the inductive hypothesis. Because population growth into the next period can be represented as in (B18), it is clear that $\eta_{j+2} \in (\eta_1, \eta_2)$. In addition, supposing without loss of generality that j+1 is odd, continuing to iterate (B17) and (B18) forward, and using the inductive hypothesis on the population growth and bride price inequalities in part (i) yields $p_{j+2} \le p_{j+4} \le p_{j+5} \le p_{j+3}$ and $\eta_{j+1} \le \eta_{j+3} \le \eta_{j+4} \le \eta_{j+2}$.

Similarly, for part (ii), the share of age-disparate marriages in j+1 takes the same form as in (B19) but with η_{j+1} replacing η_2 . Therefore, $D_{j+1} < D_1$ because $(1-\mu)\eta_1 < \eta_{j+1}$ from part (i). This condition along with the first part of Assumption B3 imply that B_{j+1} , which is analogous to the period-2 expression in (B20), is also between B_1 and B_0 .

For part (iii), the inductive hypothesis $k_{j+1} < k_2$ and rewriting k_{j+1} as in the right-hand side of the second equality in (B21) imply that $k_j^{\alpha}(\frac{\eta_1}{\eta_{j+1}}) < k_1^{\alpha}(\frac{\eta_1}{\eta_2})$. Expressing k_{j+2} in the same manner yields

$$k_{j+2} = k_1^{1-\alpha^2} \left(k_j^{\alpha} \left[\frac{\eta_1}{\eta_{j+1}} \right] \right)^{\alpha} \left(\frac{\eta_1}{\eta_{j+2}} \right) < k_1 \left(\frac{\eta_1}{\eta_2} \right)^{\alpha} \left(\frac{\eta_1}{\eta_{j+2}} \right) = k_2 \left(\frac{\eta_2}{\eta_1} \right)^{1-\alpha} \left(\frac{\eta_1}{\eta_{j+2}} \right). \tag{B22}$$

The last term in (B22) is less than k_2 if and only if $\frac{\eta_1}{\eta_{j+2}} < \left(\frac{\eta_1}{\eta_2}\right)^{1-\alpha}$, which is true regardless of whether j+2 is even or odd because $\frac{\eta_1}{\eta_3} < \left(\frac{\eta_1}{\eta_2}\right)^{1-\alpha}$ and the second statement in part (i) gives that η_3 is less than all other rates of population growth except η_1 .

To show that the second statement in part (iii) holds, note that the inductive hypothesis implies

$$\frac{k_1}{k_{j+1}} = \left(\frac{k_1}{k_j}\right)^{\alpha} \left(\frac{\eta_{j+1}}{\eta_1}\right) < \frac{\eta_{j+1}}{\eta_1}. \tag{B23}$$

As the second part of Assumption B₃ gives $\alpha < \frac{1}{2}$, it is sufficient to show that the final term in (B₂₃) is less than $(\frac{\eta_{j+2}}{\eta_1})^2$. If j+1 is odd, this statement is true because of the second statement in part (i). If j+1 is even, it is straightforward to use (B₁₇) and (B₁₈) to show that it also holds in this case.

For part (iv), young and old men's decisions remain unchanged, so $\bar{c}_{j+1}^{A,M} = \bar{c}_2^{A,M}$, $A \in \{Y,M\}$. On the female side, the fact that young women's consumption changes with the capital stock means $c_{j+1}^{Y,F} < c_1^{Y,F}$. With respect to old women's consumption, $c_{j+1}^{O,F} > c_1^{O,F}$ if and only if $\frac{\delta}{\alpha A} (k_1^\alpha - k_j^\alpha) > \left(\frac{1}{k_1^{1-2\alpha}} - \frac{k_j^\alpha}{k_{j+1}^{1-\alpha}}\right)$. This statement is true because the left-hand side of the inequality is positive while the right-hand side can be shown to be negative due to the second statement in part (iii).

B5. Parameter Choices

Table B1: Choices of Parameter Values [12, 58, 62]

Parameter	Interpretation	Value	Justification
Period length	How long a generation lasts	30 years	Wang et al. (2023)
γ	Preference for fertility	0.58	Tertilt (2005)
β	Discount rate	$0.95^{30} = 0.215$	Tertilt (2005)
ϵ	Cost of children's survival	44	Tertilt (2005)
A	Level of technology	433	Tertilt (2005)
α	Capital's share of income	0.4	Tertilt (2005)
δ	Depreciation	$1 - (1 - 0.07)^{30} = 0.887$	Tertilt (2005)
μ	Share of high-wage young men	0.333	Appendix <mark>H1</mark>
y^{O}	Old men's wages	10,000	Assumption B ₁ , baseline
•	•		BGP has annual 2.7% pop. growth and 6.9% interest
y^{Y}	Young men's low wages	10,000	Assumption B ₁ , simplicity
\hat{g}^{Y}	Young men's high wages	25,000	Assumptions B2 and B3, new BGP has annual 4.0% pop. growth and 8.5% interest

B6. New Wage Regime: Balanced Growth Path

Lastly, I characterize the new BGP of this economy and marriage market. In contrast to the propositions above, which are helpful for comparing regions with the same shares of high-wage young men μ but different periods in which the new wage regime began, my interest now is in differences in outcomes for regions that entered the new wage regime at the same time but had different values of μ . These predictions are most relevant for studying relationships between circular migration and outcomes of interest across Southern Africa. In summary, greater shares of high-wage young men accentuate the changes described in the previous propositions.

Assumption B4. Domestic capital's share of income is above a certain level: $\alpha > \frac{\delta \beta}{1 + (1 + \delta)\beta}$.

Proposition B4. On the BPG under the new wage regime, as the share of high-wage young men increases:

- i. The bride price and population growth rate increase while the share of age-disparate marriages, the number of wives per man, and the domestic capital stock decrease.
- ii. Average consumption increases for men and old women, but it decreases for young women.

Proof. The proof consists of taking derivates of the expressions of interest with respect to μ . For part (i), following the logic in the previous section and denoting values on the new BGP with ∞ subscripts, p_{∞} can be written in the same way as in (B17):

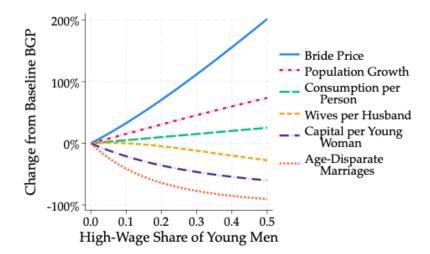
$$p_{\infty} = p_0 \left(\frac{\mu \eta_{\infty} \hat{y}^Y + (1 - \mu) y^O}{y^O} \right) \left(\frac{\eta_1}{\eta_{\infty}} \right). \tag{B24}$$

However, the constant rate of population growth η_{∞} can only be defined by the function

$$F \equiv \eta_{\infty}^{3} - \eta_{1}^{3} \left(\frac{\mu \eta_{\infty} \hat{y}^{Y} + (1 - \mu) y^{O}}{y^{O}} \right) = 0.$$

It is straightforward to use the Implicit Function Theorem to show that $\frac{d\eta_{\infty}}{d\mu} > 0$, and after substituting it into the total derivative of (B24) with respect to μ , it can be shown that this expression is positive as well.

Similarly, D_{∞} and B_{∞} take the same forms as in (B19) and (B20). As a result, $\frac{\partial D_{\infty}}{\partial \mu}$ and $\frac{\partial D_{\infty}}{\partial \eta}$ are both negative, so D_{∞} clearly decreases with μ . The sign of $\frac{dB_{\infty}}{d\mu}$ is not immediately apparent, as $\frac{\partial B_{\infty}}{\partial \mu} < 0$ and $\frac{\partial B_{\infty}}{\partial \eta_{\infty}} > 0$, but it can be shown that the former is larger in absolute value than the latter, so B_{∞} also decreases with μ . In addition, the

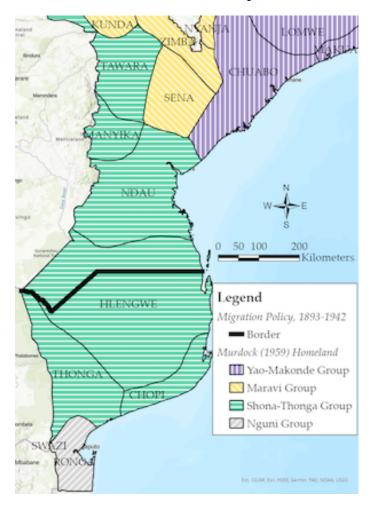

⁴⁰ This restriction on the lower bound of capital's share of income is more strict than in Assumption B₃ but still relatively weak, as the numerator is below 1 but the denominator is well above it – under the parameter values in Appendix B₅, this threshold is 0.276. This condition is well beyond necessary for old women's consumption to increase with the share of high-wage young men, but it is the simplest closed-form and parameter-only version of the assumption that achieves sufficiency.

expression for the capital stock is analogous to (B11), which clearly decreases with μ because it moves in the opposite direction of population growth.

For part (ii), young men's average consumption $\bar{c}_{\infty}^{Y,M} = \frac{\mu \hat{y}^Y}{1+\gamma} + (1-\mu)y^Y$ increases with μ if and only if $\hat{y}^Y > (1+\gamma)y^Y$, which is given by the first part of Assumption B1 and Assumption B2. The same is clearly true of old men's average consumption, $\bar{c}_{\infty}^{O,M} = (\frac{y^O}{1+\gamma})(1+\gamma\mu)$, whereas young women's decreases because it moves with the capital stock. Lastly, for old women's consumption $c_{\infty}^{O,F} = \frac{\beta}{1+\beta}r_{\infty}w_{\infty}$, it can be shown that Assumption B4 is sufficient for $\frac{dc_{\infty}^{O,F}}{d\mu} = \frac{\partial c_{\infty}^{O,F}}{\partial \eta_{\infty}} \frac{\partial \eta_{\infty}}{\partial \mu} + \frac{\partial c_{\infty}^{O,F}}{\partial k_{\infty}} \frac{\partial k_{\infty}}{\partial \eta_{\infty}} \frac{\partial \eta_{\infty}}{\partial \mu} > 0$ because $\eta_{\infty} > \eta_{1} > 1$.

B7. Comparative Statics for New BGP

Figure B1: New BGP as High-Wage Share of Young Men Varies [31]



Notes: The graph shows the relative differences between the baseline and new BGPs as the high-wage share of young men increases from zero to one-half.

Appendix C. Additional Figures: Present-Day Effects

C1. Ethnic Homelands and Cultural Groups

Figure C1: Ethnic Homelands and Cultural Groups in Southern Mozambique [15]

Notes: The map shows Murdock (1959) ethnic homelands and their broader cultural groups.

C2. Dividing Area into Gridcells

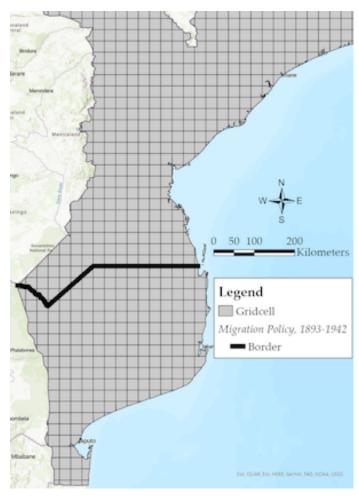
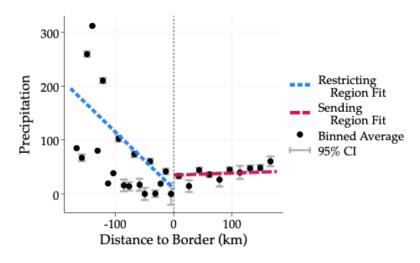
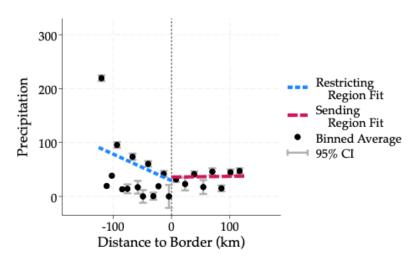



Figure C2: 0.25-Degree \times 0.25-Degree Gridcells [15]

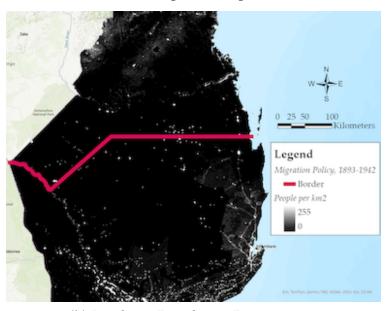

Notes: The map shows the division of southern Mozambique into 0.25 \times 0.25-degree gridcells used for the analysis of geospatial data.

C3. Balance Test: RD Plots

Figure C3: Balance Tests at the Border [15]

(a) Precipitation: Optimal Bandwidth

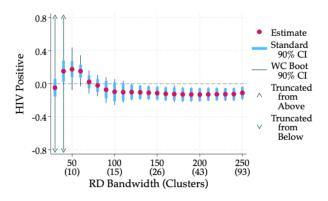
(b) Precipitation: Constant Bandwidth


Notes: The graphs show average precipitation in mm within a bin and linear fits within each region after adjusting for longitude. The RD bandwidth is MSE-optimal in the top graph and 125 km in the bottom graph.

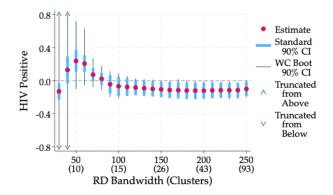
C4. Geospatial Measures of Development

Figure C4: Maps of Geospatial Measures of Development [19]

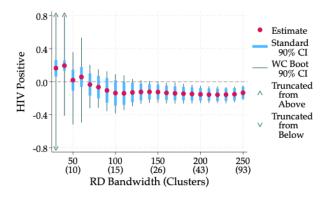
(a) VIIRS Nighttime Lights, 2019


(b) Landscan Population Density, 2019

Notes: The left map shows 2019 nighttime lights from Román et al. (2018) and the right map shows estimated 2019 population density from Rose et al. (2020).

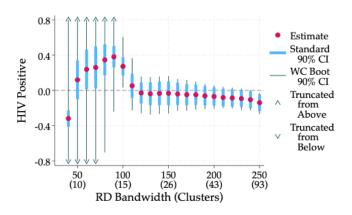

Appendix D. Robustness Checks: Present-Day Effects

D1. HIV RD Results: Varying Local Linear Bandwidths

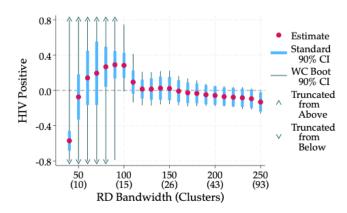

Figure D1: HIV Prevalence [19]

(a) HIV Positive: Pooled

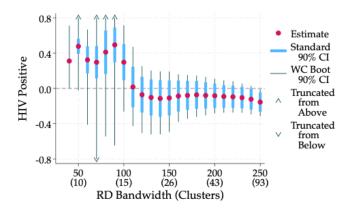
(b) HIV Positive: Women



(c) HIV Positive: Men


Notes: The graphs show RD estimates and standard and wild cluster bootstrap 90-percent confidence intervals for HIV prevalence across a range of bandwidths using a local linear RD polynomial.

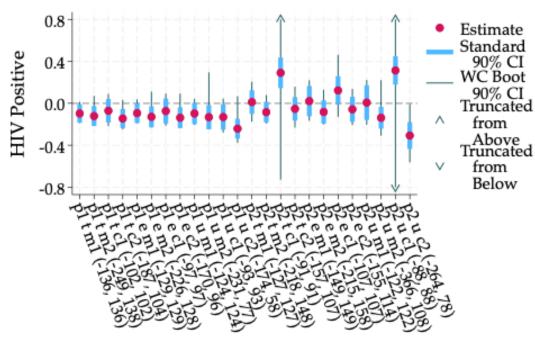
D2. HIV RD Results: Varying Local Quadratic Bandwidths


Figure D2: HIV Prevalence [19]

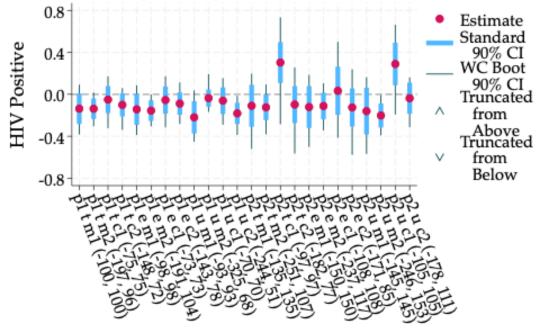
(a) HIV Positive: Pooled

(b) HIV Positive: Women

(c) HIV Positive: Men


Notes: The graphs show RD estimates and standard and wild cluster bootstrap 90-percent confidence intervals for HIV prevalence across a range of bandwidths using a local quadratic RD polynomial.

D3. HIV RD Results: Varying RD Parameters


Figure D3: HIV Prevalence [19]

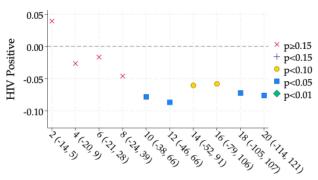
(a) HIV Positive: Pooled

(b) HIV Positive: Women

(c) HIV Positive: Men

Notes: The graphs show RD estimates and standard and wild cluster bootstrap 90-percent confidence intervals for HIV prevalence when using local linear (p1) or quadratic (p2) RD polynomials, triangular (t), Epanechnikov (e), or uniform (u) weighting kernels, and symmetric MSE-optimal (m1), asymmetric MSE-optimal (m2), symmetric CER-optimal (c1), or asymmetric CER-optimal (c2) RD bandwidth selection methods, where CER stands for coverage error rate. Bandwidths selected for each combination of parameters are in parentheses.

D4. HIV and Development RD Results Using Data Collapsed into Clusters


Table D1: HIV Prevalence and Development Outcomes [19]

	F	HIV Positiv	e	Assets	Scho	oling
	Pooled (1)	Women (2)	Men (3)	Pooled (4)	Female (5)	Male (6)
Panel A. Optimal Bandwidth	h					
Sending Region	-0.150	-0.119	-0.239	-0.514	0.284	0.032
	(0.042)	(0.059)	(0.094)	(0.398)	(0.253)	(0.753)
	[0.026]	[0.031]	[0.062]	[0.226]	[0.187]	[0.654]
Observations	23	23	15	19	27	28
Bandwidth	139.7	136.0	99.5	48.8	91.2	96.5
Restricting Region Mean	0.210	0.209	0.210	-0.393	2.45	3.28
Restricting Region SD				0.150	0.70	0.90
Panel B. Constant Bandwidt	² h					
Sending Region	-0.151	-0.112	-0.155	-0.272	0.034	-0.353
	(0.050)	(0.063)	(0.058)	(0.149)	(0.239)	(0.567)
	[0.032]	[0.032]	[0.043]	[0.122]	[0.201]	[0.534]
Observations	21	21	21	45	40	40
Bandwidth	125	125	125	125	125	125
Restricting Region Mean	0.209	0.208	0.210	-0.289	2.45	3.23
Restricting Region SD				0.357	0.65	0.94
Panel C. Randomization Infe	erence					
Sending Region	-0.084	-0.075	-0.099	-0.128	-0.242	-0.251
	{o.16}	{0.29}	{0.14}	{0.24}	{0.63}	{0.80}
Observations	10	10	10	10	10	10
Bandwidth	-38, 66	-38, 66	-38, 66	-28, 18	-28, 18	-28, 18
Restricting Region Mean	0.198	0.192	0.202	-0.401	2.42	3.04
Restricting Region SD	-	-		0.041	0.74	0.51

Notes: The table replicates Table 2 using data collapsed to DHS survey cluster-level means.

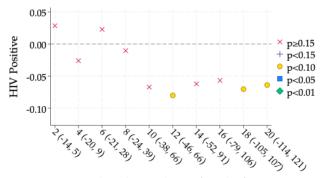
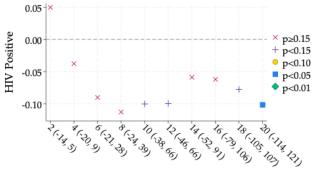

D5. HIV Randomization Inference: Varying Windows

Figure D4: HIV Prevalence [19]


Number of DHS Clusters (Window)

(a) HIV Positive: Pooled

Number of DHS Clusters (Window)

(b) HIV Positive: Women

Number of DHS Clusters (Window)

(c) HIV Positive: Men

Notes: The graphs show randomization inference estimates and statistical significance for HIV prevalence among the respective groups when including a range of DHS survey clusters in the sample. Randomization inference windows are in parentheses.

D6. HIV and Development Randomization Inference: Placebo Windows

Table D2: HIV Prevalence and Development Outcomes [19]

	I	HIV Positiv	e	Assets	Scho	oling
	Pooled (1)	Women (2)	Men (3)	Pooled (4)	Female (5)	Male (6)
Panel A. Restricting Region	on					
Placebo Treatment	-0.039	-0.058	-0.004	-0.343	-0.449	-0.739
	{0.37}	{0.29}	{1.00}	{0.00}	{0.08}	{0.02}
Observations	420	272	148	1,152	448	389
Clusters	10	10	10	10	10	10
Placebo Cutoff	-42. 0	-42.0	-42.0	-29.0	-29.0	-29.0
Window	-14, -114	-14, -114	-14, -114	-14, -52	-14, -76	-14, -76
Placebo Control Mean	0.240	0.250	0.220	-0.060	2.75	3.78
Placebo Control SD				0.720	2.78	3.33
Panel B. Sending Region						
Placebo Treatment	0.048	0.066	0.001	-0.026	-0.254	-0.704
	{0.23}	{o.18}	{1.00}	{0.24}	{0.31}	{0.01}
Observations	399	268	131	1,092	479	374
Clusters	10	10	10	10	10	10
Placebo Cutoff	66.0	66.0	66.0	18.5	18.5	18.5
Window	5, 121	5, 121	5, 121	5, 44	5, 51	5, 51
Placebo Control Mean	0.120	0.120	0.110	-0.550	2.05	2.67
Placebo Control SD				0.370	2.45	2.68

Notes: The table replicates Table 2 Panel C when moving the border 5 clusters north into the former restricting region (Panel A) or 5 clusters south into the former sending region (Panel B).

D7. Placebo Test: Niassa Company Concession

Table D3: HIV and Development RD Results: Niassa Company Border [19]

	F	IIV Positiv	re	Assets	Schoo	ling
	Pooled	Women	Men	Pooled	Female	Male
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Optimal Bandwidth						
Placebo Sending Region	-0.020	-0.027	0.024	-0.123	1.20	0.78
	(0.022)	(0.035)	(0.032)	(0.161)	(0.61)	(0.43)
	[0.025]	[0.040]	[0.039]	[0.158]	[0.56]	[0.43]
Observations	1,220	777	623	5,329	1,600	1,839
Clusters	34	40	38	65	45	51
Bandwidth	47.8	54.2	51.0	40.2	37.0	38.6
Wild Cluster Bootstrap <i>p</i> -value	0.47	0.49	0.50	0.49	0.05	0.11
Niassa Company Mean	0.081	0.111	0.062	-0.424	2.84	3.80
Niassa Company SD				0.737	3.32	3.50
Panel B. Constant Bandwidth						
Placebo Sending Region	-0.016	-0.048	0.024	-0.147	0.29	-0.01
	(0.024)	(0.036)	(0.032)	(0.149)	(0.50)	(0.40)
	[0.025]	[0.041]	[0.040]	[0.146]	[0.51]	[0.43]
Observations	1,303	710	593	6,534	2,267	2,291
Clusters	36	36	36	78	62	62
Bandwidth	50	50	50	50	50	50
Wild Cluster Bootstrap <i>p</i> -value	0.58	0.30	0.54	0.36	0.59	0.98
Niassa Company Mean	0.086	0.105	0.064	-0.415	2.73	3.74
Niassa Company SD				0.745	3.21	3.52
Panel C. Randomization Inference						
Placebo Sending Region	-0.031	-0.050	-0.009	-0.010	0.28	0.04
	{0.30}	{0.25}	{1.00}	{0.34}	{0.27}	{0.90}
Observations	340	182	158	7 80	325	300
Clusters	10	10	10	10	9	9
Bandwidth	-15, 22	-15, 22	-15, 22	-9, 8	-9, 8	-9, 8
Niassa Company Mean	0.065	0.073	0.056	-0.792	1.52	2.55
Niassa Company SD				0.175	2.12	2.77

Notes: The table replicates Table 2 using the former Niassa Company's border with territory ruled by the colonial state in northern Mozambique. See Appendix A2 for a map.

D8. HIV Test Refusals and Treatment Biomarkers

Table D4: HIV Blood Test Refusals and ARV Biomarkers [19]

	R	Refused Tes	st	ARV
	Pooled	Women	Men	Pooled
	(1)	(2)	(3)	(4)
Panel A. Optimal Bandwidth				
Sending Region	0.005	0.007	-0.003	0.197
	(0.005)	(0.007)	(0.003)	(0.236)
	[0.004]	[0.006]	[0.003]	[0.077]
Observations	303	195	121	57
Clusters	8	8	9	8
Bandwidth	83.7	83.0	94.5	83.1
Wild Cluster Bootstrap <i>p</i> -value	0.53	0.52	0.48	0.52
Restricting Region Mean	0.000	0.000	0.000	0.303
Panel B. Constant Bandwidth				
Sending Region	0.004	0.009	-0.007	0.049
	(0.007)	(0.009)	(0.006)	(0.234)
	[0.006]	[0.008]	[0.006]	[0.117]
Observations	412	277	135	80
Clusters	11	11	11	11
Bandwidth	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.60	0.48	0.40	0.91
Restricting Region Mean	0.005	0.008	0.000	0.250
Panel C. Randomization Inference				
Sending Region	0.000	0.000	0.000	0.034
	{1.000}	{1.000}	{1.000}	{1.000}
Observations	154	95	59	39
Clusters	10	10	10	10
Window	-28, 18	-28, 18	-28, 18	-38, 66
Restricting Region Mean	0.000	0.000	0.000	0.316

Notes: The outcomes of interest are whether a respondent did not consent to a blood test for HIV and whether a respondent's blood contained biomarkers for antiretroviral drugs. See the notes to Table 2.

D9. Development Results Using Geospatial Data

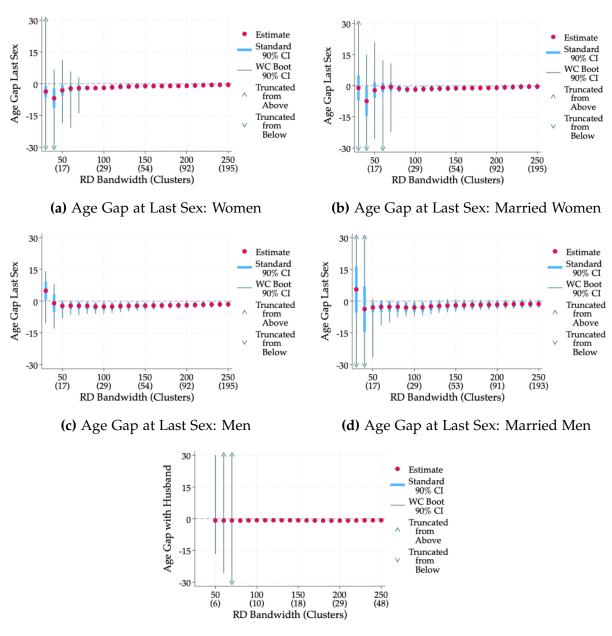
Table D5: Development Results Using Geospatial Data [19]

	VI	IRS Nighttii	me Lights	LandScan	Population Density
	Any Light (1)	Intensity (2)	Log(Intensity+1) (3)	People/km ² (4)	Log(People/km ² +1) (5)
Panel A. Optimal Bandwidth					
Sending Region	0.000	0.023	-0.001	0.989	0.199
	(0.000)	(0.029)	(0.001)	(6.685)	(0.243)
	[0.000]	[0.026]	[0.001]	[4.904]	[0.264]
Observations	147	296	220	200	147
Clusters	27	76	43	37	27
Bandwidth	123.9	275.9	193.8	172.4	121.6
Wild Cluster Bootstrap <i>p</i> -value	1.00	0.73	0.43	0.88	0.48
Restricting Region Mean	0.000	0.050	0.000	14.59	0.684
Restricting Region SD	0.000	0.560	0.000	71.73	1.133
Panel B. Constant Bandwidth					
Sending Region	0.000	0.000	0.000	8.338	0.194
	(0.000)	(0.000)	(0.000)	(6.834)	(0.249)
	[0.000]	[0.000]	[0.000]	[6.457]	[0.264]
Observations	163	163	163	164	164
Clusters	28	28	28	28	28
Bandwidth	125	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	1.00	1.00	1.00	0.19	0.47
Restricting Region Mean	0.000	0.000	0.000	13.40	0.756
Restricting Region SD	0.000	0.000	0.000	77.53	1.175
Panel C. Randomization Inference					
Sending Region	0.000	0.000	0.000	0.087	-0.060
-	{1.00}	{1.00}	{1.00}	{0.92}	{0.76}
Observations	46	46	46	46	46
Window	-42, 35	-42, 35	-42, 35	-42, 35	-42, 35
Restricting Region Mean	0.000	0.000	0.000	0.610	0.397
Restricting Region SD		0.000	0.000	0.66	0.404

Notes: The outcomes of interest for 2019 VIIRS nighttime lights (Román et al., 2018) are whether a gridcell contains any, the average intensity within a gridcell, and its log. The outcomes of interest for 2019 Land-Scan population density (Rose et al., 2020) are people per square kilometer and its log. See the notes to Table 1.

D10. Development Results Using Census Data

Table D6: Human Capital and Migration Results Using Census Data [19]


	Lite	rate	Any Scl	nooling	Reside B	irth Dist.
	Women	Men	Women	Men	Women	Men
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Optimal Bandwidth						
Sending Region	0.061	0.053	0.056	0.080	0.055	0.016
	(0.067)	(0.066)	(0.066)	(0.082)	(0.039)	(0.062)
	[0.057]	[0.059]	[0.060]	[0.075]	[0.043]	[0.054]
Observations	17,350	10,295	14,964	8,231	17,003	8,778
Clusters	14	13	13	10	14	11
Bandwidth	124.5	121.8	118.3	98.5	124.2	105.0
Wild Cluster Bootstrap <i>p</i> -value	0.57	0.60	0.65	0.66	0.50	0.87
Mobility Restricting Mean	0.282	0.629	0.330	0.623	0.831	0.806
Panel B. Constant Bandwidth						
Sending Region	0.060	0.053	0.052	0.070	0.057	0.024
	(0.068)	(0.067)	(0.066)	(0.075)	(0.040)	(0.062)
	[0.057]	[0.058]	[0.058]	[0.070]	[0.043]	[0.059]
Observations	17,350	11,607	17,386	11,605	17,003	11,350
Clusters	14	14	14	14	14	14
Bandwidth	125	125	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.57	0.59	0.67	0.58	0.50	0.77
Mobility Restricting Mean	0.282	0.627	0.305	0.623	0.831	0.841
Panel C. Randomization Inference						
Sending Region	0.044	0.046	0.039	0.041	0.055	0.069
	{0.00}	{0.00}	{0.00}	{0.00}	{0.00}	{0.00}
Observations	12,192	8,239	12,210	8,231	12,004	8,084
Clusters	10	10	10	10	10	10
Window	-77, 77	-77, 77	<i>-77, 77</i>	-77, 77	<i>-77, 77</i>	-77, 77
Restricting Region Mean	0.318	0.632	0.331	0.623	0.791	0.806

Notes: The outcomes of interest are whether a respondent in the IPUMS 10-percent sample of the 2007 census of Mozambique was literate, had any schooling, and lived in their district of birth. Standard errors clustered by administrative post are in parentheses. See the notes to Table 2.

Appendix E. Robustness Checks: Proximate Causes

E1. Marriage RD Results: Varying Local Linear Bandwidths

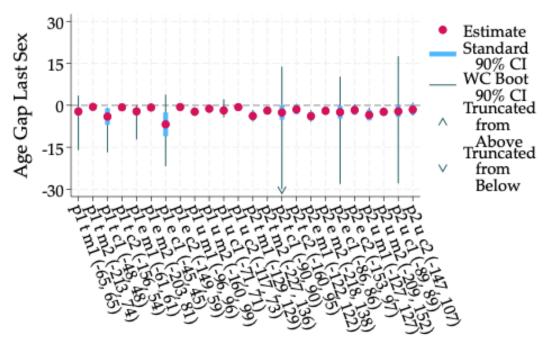
Figure E1: Age-Disparate Relationships [23]

(e) Age Gap with Husband: Women

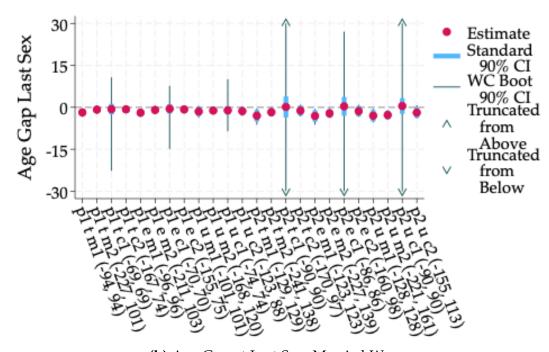
Notes: The graphs show RD estimates and standard and wild cluster bootstrap 90-percent confidence intervals for HIV prevalence across a range of bandwidths using a local linear RD polynomial.

E2. Marriage RD Results: Varying Local Quadratic Bandwidths

30 Estimate Estimate Standard Standard Age Gap Last Sex Age Gap Last Sex 15 15 WC Boot WC Boot 90% CI 90% CI 0 Truncated Truncated from Above from Above -15 -15 Truncated Truncated from Below Below -30 -30 50 (17) 50 (17) 100 (29) 150 (54) RD Bandwidth (Clusters) RD Bandwidth (Clusters) (a) Age Gap at Last Sex: Women **(b)** Age Gap at Last Sex: Married Women Estimate Estimate Standard Standard Age Gap Last Sex Age Gap Last Sex 15 15 90% CI WC Boot WC Boot 90% CI 90% CI 0 Truncated Truncated from from Above Above Truncated Truncated from Below from Below -30 -30 200 (92) 250 (195) 150 (53) 200 (91) 250 (193) 50 (17) 150 (54) 50 (17) RD Bandwidth (Clusters) RD Bandwidth (Clusters) (c) Age Gap at Last Sex: Men (d) Age Gap at Last Sex: Married Men 30 Age Gap with Husband Estimate Standard 90% CI WC Boot 90% CI Truncated from Above Truncated -30 100 150 200 (10) (18) (29) RD Bandwidth (Clusters) 250 (48)

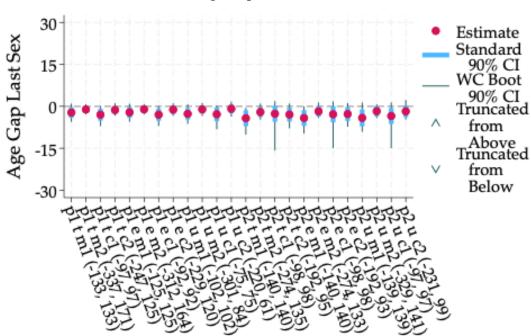

Figure E2: Age-Disparate Relationships [23]

(e) Age Gap with Husband: Women

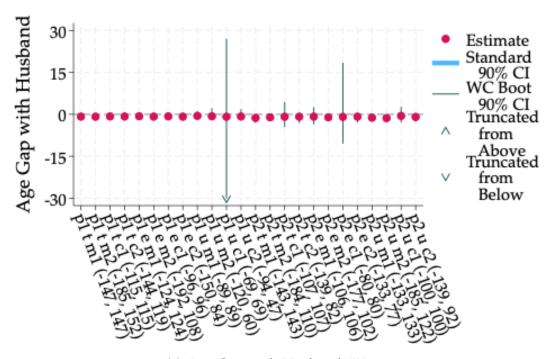

Notes: The graphs show RD estimates and standard and wild cluster bootstrap 90-percent confidence intervals for HIV prevalence across a range of bandwidths using a local quadratic RD polynomial.

E3. Marriage RD Results: Varying RD Parameters

Figure E3: Age-Disparate Relationships [23]



(a) Age Gap at Last Sex: Women



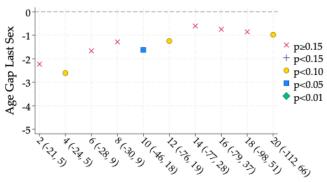
(b) Age Gap at Last Sex: Married Women

(d) Age Gap at Last Sex: Married Men

(e) Age Gap with Husband: Women

Notes: The graphs show RD estimates and standard and wild cluster bootstrap 90-percent confidence intervals for the respective outcomes when using linear (p1) or quadratic (p2) RD polynomials, triangular (t), Epanechnikov (e), or uniform (u) weighting kernels, and symmetric MSE-optimal (m1), asymmetric MSE-optimal (m2), symmetric CER-optimal (c1), or asymmetric CER-optimal (c2) RD bandwidth selection methods. Bandwidths selected for each combination of parameters are in parentheses.

E4. Results Using Data Collapsed into Clusters: Marriage


 Table E1: Age-Disparate Partnerships [23]

Male-Female Age Gap with:		Last Sexual Partner				
	Wome	en 15-49	Mer	Men 15-49		
	All	Married	All	Married	Women	
	(1)	(2)	(3)	(4)	(5)	
Panel A. Optimal Bandwidth						
Sending Region	-3.03	-2.46	-1.29	-1.41	-0.56	
	(1.38)	(1.08)	(1.25)	(1.68)	(0.28)	
	[0.73]	[0.75]	[1.09]	[1.74]	[0.22]	
Observations	14	22	41	35	18	
Bandwidth	65.4	94.1	133.1	132.6	144.5	
Restricting Region Mean	7.50	7.33	5.79	7.10	8.39	
Restricting Region SD	1.15	1.27	2.49	1.92	0.58	
Panel B. Constant Bandwidth						
Sending Region	-1.79	-1.60	-1.31	-1.48	-0.42	
	(0.91)	(0.92)	(1.33)	(1.78)	(0.44)	
	[0.79]	[0.86]	[1.17]	[1.82]	[0.29]	
Observations	30	30	38	32	14	
Bandwidth	125	125	125	125	125	
Restricting Region Mean	7.05	7.17	5.80	7.11	8.39	
Restricting Region SD	1.16	1.22	2.50	1.91	0.60	
Panel C. Randomization Inferen	се					
Sending Region	-1.75	-1.77	-2.00	-3.50	-0.99	
2 2	{0.09}	{0.09}	{0.24}	{0.08}	{0.04}	
Observations	10	10	10	10	10	
Bandwidth	-46, 18	-46, 18	-28, 18	-30, 18	-77, 77	
Restricting Region Mean	7.30	7·43	5.55	7.04	8.44	
Restricting Region SD	1.09	1.16	2.67	1.82	0.73	

 $\it Notes$: The table replicates Table 3 using data collapsed to DHS survey cluster-level means.

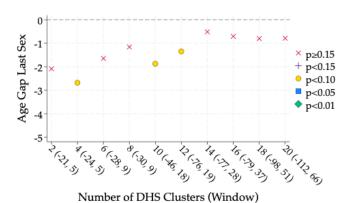
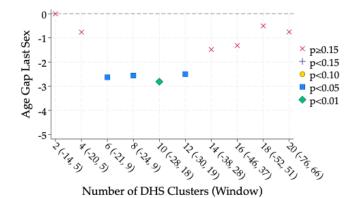
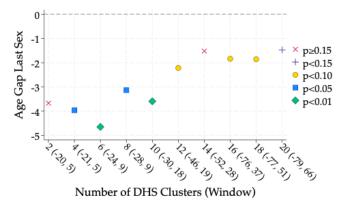
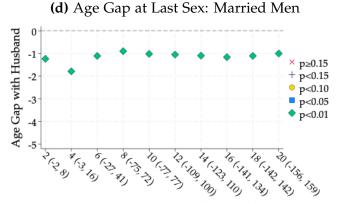

E5. Marriage Randomization Inference: Varying Windows

Figure E4: Age-Disparate Relationships [23]



Number of DHS Clusters (Window)


(a) Age Gap at Last Sex: Women



(b) Age Gap at Last Sex: Married Women

(c) Age Gap at Last Sex: Men

Number of DHS Clusters (Window)

(e) Age Gap with Husband: Women

Notes: The graphs show randomization inference estimates and statistical significance for the respective outcomes and groups when including a range of DHS survey clusters in the sample. Randomization inference windows are in parentheses.

E6. Marriage Randomization Inference: Placebo Windows

Table E2: Age-Disparate Relationships [23]

Male-Female Age Gap with:		Last Sexual Partner					
	Wome	n 15-49	Men	15-49	Women		
	All	Married	All	Married	VVOINCI		
	(1)	(2)	(3)	(4)	(5)		
Panel A. Restricting Region							
Placebo Treatment	0.76	1.06	1.93	1.89	-0.03		
	{0.32}	{0.20}	{0.13}	{0.21}	{0.85}		
Observations	158	138	68	53	5,809		
Clusters	10	10	10	10	10		
Placebo Cutoff	-61.4	-61.4	-29.0	-38.1	-93.4		
Bandwidth	-21, -112	-21, -112	-14, -76	-20, -79	-2, -156		
Placebo Control Mean	6.58	6.49	4.83	6.00	8.38		
Placebo Control SD	4.37	4.26	4.85	4.80	6.29		
Panel B. Sending Region							
Placebo Treatment	0.46	1.01	2.62	2.96	0.07		
	{0.53}	{0.27}	{0.01}	{0.02}	{0.69}		
Observations	152	125	61	51	6,921		
Clusters	10	10	10	10	10		
Placebo Cutoff	18.5	18.5	18.5	18.5	88.5		
Bandwidth	5, 66	5, 66	5, 66	5, 66	8, 159		
Placebo Control Mean	5.71	5.68	3.94	4.29	7.32		
Placebo Control SD	4.74	4.97	3.79	3.98	6.78		

Notes: The table replicates Table 3 Panel C when moving the border 5 clusters north into the former restricting region (Panel A) or 5 clusters south into the former sending region (Panel B).

E7. Placebo Test: Niassa Company Concession

Table E3: Partner Age Gap Results: Niassa Company Border [23]

Male-Female Age Gap with:		Last Sexual Partner				
	Wom	en 15-49	Mer	n 15-49	Women	
	All	Married	All	Married		
	(1)	(2)	(3)	(4)	(5)	
Panel A. Optimal Bandwidth						
Sending Region	-1.19	-1.01	0.22	-0.23	0.86	
	(0.97)	(1.12)	(0.82)	(0.99)	(0.32)	
	[0.96]	[1.11]	[0.77]	[0.96]	[0.28]	
Observations	1,497	1,247	924	684	22,653	
Clusters	102	102	116	101	30	
Bandwidth	96.6	96.3	90.2	89.8	47.7	
Wild Cluster Bootstrap <i>p</i> -value	0.35	0.59	0.82	0.86	0.14	
Restricting Region Mean	6.28	6.32	5.32	5.51	6.30	
Restricting Region SD	4.94	5.03	4.31	4.42	5.98	
Panel B. Constant Bandwidth						
Sending Region	-2.11	-1.88	0.41	-0.03	0.85	
	(1.39)	(1.59)	(1.10)	(1.25)	(0.32)	
	[1.39]	[1.54]	[0.92]	[1.10]	[0.27]	
Observations	660	548	436	326	27,453	
Clusters	43	43	57	48	33	
Bandwidth	50	50	50	50	50	
Wild Cluster Bootstrap <i>p</i> -value	0.23	0.46	0.78	0.98	0.11	
Restricting Region Mean	6.13	6.18	4.98	5.40	6.54	
Restricting Region SD	4.94	5.10	4.17	4.28	6.03	
Panel C. Randomization Inference						
Sending Region	-2.23	-2.18	0.63	0.71	0.78	
	{0.03}	{0.05}	{0.54}	{o.55}	{0.00}	
Observations	111	99	71	61	7,620	
Clusters	10	10	10	10	10	
Window	-8, 11	-8, 11	-8, 11	-8, 11	-14, 19	
Niassa Company Mean	7.09	7.08	4.43	4.55	5.92	
Niassa Company SD	5.78	5.99	3.93	4.00	5.85	

Notes: The table replicates Table 3 using the former Niassa Company's border with territory ruled by the colonial state in northern Mozambique. See Appendix A2 for a map.

Appendix F. Additional Results: Proximate Causes

F1. HIV Risk Factors Associated with Age-Disparate Relationships

Table F1: Risk Factors Associated with Age Disparities [23]

	Men		I	Vomen		
	Multiple Partners (1)	Polygynous Marriage (2)	Virgin: Ages 15-24 (3)	Condom Last Sex (4)	Forced Sex Ever (5)	Decision Share (6)
Panel A. Optimal Bandwidth						
Sending Region	-0.085 (0.084) [0.068]	-0.043 (0.051) [0.068]	-0.033 (0.035) [0.045]	0.066 (0.036) [0.051]	-0.028 (0.033) [0.030]	0.023 (0.071) [0.071]
Observations	623	444	475	538	347	604
Clusters	71	26	56	29	30	38
Bandwidth	175.2	87.6	154.4	104.8	127.8	146.1
Wild Cluster Bootstrap <i>p</i> -value	0.34	0.62	0.49	0.20	0.51	0.77
Restricting Region Mean	0.242	0.341	0.171	0.081	0.061	0.631
Panel B. Constant Bandwidth Sending Region	-0.033 (0.107) [0.089]	-0.009 (0.047) [0.058]	-0.057 (0.038) [0.046]	0.035 (0.033) [0.035]	-0.027 (0.035) [0.030]	0.037 (0.078) [0.077]
Observations	404	690	337	764	347	491
Clusters	40	40	40	40	30	30
Bandwidth	125.0	125.0	125.0	125.0	125.0	125.0
Wild Cluster Bootstrap <i>p</i> -value	0.78	0.91	0.31	0.33	0.53	0.66
Restricting Region Mean	0.219	0.328	0.143	0.075	0.061	0.649
Panel C. Randomization Inference Sending Region	-0.014 {1.00}	-0.053 {0.55}	-0.054 {0.50}	-0.014 {0.93}	-0.029 {0.84}	0.019 {0.73}
Observations	138	180	108	185	89	128
Clusters	10	10	10	10	10	10
Window	-28, 28	-28, 18	-38, 37	-28, 18	-28, 18	-28, 18
Restricting Region Mean	0.181	0.356	0.104	0.061	0.029	0.579

Notes: The outcome of interest for male respondents is whether he respondent has had multiple sexual partners. The outcomes of interest for female respondents are whether she is in a polygynous marriage, is a virgin, used a condom in her last sexual intercourse, and has ever had forced sexual contact as well as the share of household decisions she makes alone or is included in (on her own health, major household purchases, visiting her family, and how to spend her earnings). See the notes to Table 3.

F2. Public-Sector Health Infrastructure

Table F2: Public-Sector Health Facilities, 2018 [23]

	Any Facility	Facilities	Log(Facilities+1)
	(1)	(2)	(3)
Panel A. Optimal Bandwidth			
Sending Region	-0.018	-0.098	-0.031
Schulig Region	(0.095)	(0.198)	(0.101)
	[0.125]	[0.190]	[0.110]
	[0.125]	[0.197]	[0.110]
Observations	171	146	146
Clusters	30	25	25
Bandwidth	135.3	112.5	115.8
Wild Cluster Bootstrap <i>p</i> -value	0.87	0.65	0.77
Restricting Region Mean	0.390	0.561	0.333
Restricting Region SD	0.590	0.862	0.449
Restricting Region 52		0.002	0.449
Panel B. Constant Bandwidth			
Sending Region	0.007	-0.144	-0.045
8 8	(0.103)	(0.192)	(0.098)
	[0.129]	[0.200]	[0.109]
	1	[]	[/]
Observations	168	168	168
Clusters	29	29	29
Bandwidth	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.96	0.47	0.65
Restricting Region Mean	0.400	0.613	0.350
Restricting Region SD	•	0.985	0.474
0 0		, ,	17 1
Panel C. Randomization Inference			
Sending Region	-0.040	-0.240	-0.092
	{1.00}	{0.44}	{0.55}
	•	. 117	. 55.
Observations	50	50	50
Window	-42, 35	- 42, 35	-42, 35
Restricting Region Mean	0.360	0.600	0.330
Restricting Region SD	-	1.041	0.495
		•	175

Notes: The outcomes of interest for 2018 public-sector health facilities (Maina et al., 2019) are whether a gridcell contains any, the number within a gridcell, and its log. See the notes to Table ${\tt 1}$.

F3. Landmines

Table F3: Known and Suspected Landmines, October 2007 [23]

	Any Landmine (1)	Landmines (2)	Log(Landmines+1) (3)
Panel A. Optimal Bandwidth			
Sending Region	0.042	-0.364	-0.074
	(0.134)	(0.587)	(0.216)
	[0.103]	[0.379]	[0.143]
Observations	203	200	206
Clusters	38	36	38
Bandwidth	169.3	157.7	174.9
Wild Cluster Bootstrap <i>p</i> -value	0.78	0.66	0.80
Restricting Region Mean	0.303	0.876	0.371
Restricting Region SD		2.083	0.630
Panel B. Constant Bandwidth			
Sending Region	0.065	-0.152	-0.022
	(0.136)	(0.586)	(0.217)
	[0.098]	[0.300]	[0.121]
Observations	168	168	168
Clusters	29	29	29
Bandwidth	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.68	0.84	0.94
Restricting Region Mean	0.293	0.880	0.350
Restricting Region SD		2.193	0.629
Panel C. Randomization Inference			
Sending Region	0.040	-0.280	-0.039
	{0.94}	{0.61}	{0.94}
Observations	50	50	50
Window	-42, 35	-42, 35	-42, 35
Restricting Region Mean	0.240	0.800	0.321
Restricting Region SD	•	1.803	0.638

Notes: The outcomes of interest for October 2007 known and suspected landmines (Republic of Mozambique, 2008) are whether a gridcell contains any, the number within a gridcell, and its log. See the notes to Table 1.

F4. Civil War Violence: Global Terrorism Database

Table F4: Violent Events and Deaths in Mozambique's Civil War [23]

	Any Event	Log(Events+1) (2)	Any Death	Log(Deaths+1) (4)
Panel A. Optimal Bandwidth	(-)	(-)	(3)	(1)
Sending Region	-0.015	-0.021	-0.013	-0.031
Seriain & riegieri	(0.015)	(0.021)	(0.014)	(0.039)
	[0.012]	[0.019]	[0.012]	[0.035]
Observations	110	114	114	115
Clusters	20	20	20	20
Bandwidth	81.9	85.7	84.7	87.6
Wild Cluster Bootstrap <i>p</i> -value	0.32	0.45	0.40	0.48
Restricting Region Mean	0.000	0.000	0.000	0.000
Restricting Region SD		0.000		0.000
Panel B. Constant Bandwidth				
Sending Region	0.025	0.015	0.013	0.039
	(0.019)	(0.014)	(0.015)	(0.045)
	[0.019]	[0.015]	[0.015]	[0.045]
Observations	168	168	168	168
Clusters	29	29	29	29
Bandwidth	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.23	0.30	0.54	0.54
Restricting Region Mean	0.013	0.009	0.000	0.000
Restricting Region SD		0.080		0.000
Panel C. Randomization Inference				
Sending Region	0.000	0.000	0.000	0.000
-	{1.00}	{1.00}	{1.00}	{1.00}
Observations	50	50	50	50
Window	- 42, 35	-42, 35	- 42, 35	-42, 35
Restricting Region Mean	0.000	0.000	0.000	0.000
Restricting Region SD		0.000		0.000

Notes: The outcomes of interest for GTD violent events and deaths (START, 2022) are whether a gridcell contains any, the number within a gridcell, and its log. See the notes to Table 1.

F5. Civil War Violence: Uppsala Conflict Data Program

Table F5: Violent Events and Deaths in Mozambique's Civil War [23]

	Any Event	Log(Events+1) (2)	Any Death (3)	Log(Deaths+1) (4)
Panel A. Optimal Bandwidth				
Sending Region	-0.038	-0.020	0.015	0.029
	(0.073)	(0.053)	(0.061)	(0.122)
	[0.046]	[0.031]	[0.040]	[0.079]
Observations	146	138	174	151
Clusters	25	24	30	27
Bandwidth	115.0	101.5	139.0	119.5
Wild Cluster Bootstrap <i>p</i> -value	0.46	0.58	0.68	0.74
Restricting Region Mean	0.030	0.022	0.039	0.027
Restricting Region SD		0.122		0.219
Panel B. Constant Bandwidth				
Sending Region	-0.046	-0.069	0.003	0.027
	(0.073)	(0.059)	(0.065)	(0.122)
	[0.047]	[0.047]	[0.039]	[0.081]
Observations	168	168	168	168
Clusters	29	29	29	29
Bandwidth	125	125	125	125
Wild Cluster Bootstrap <i>p</i> -value	0.34	0.14	0.91	0.75
Restricting Region Mean	0.067	0.046	0.040	0.057
Restricting Region SD		0.174		0.287
Panel C. Randomization Inference				
Sending Region	-0.040	-0.028	0.000	0.000
	{1.00}	{1.00}	{1.00}	{1.00}
Observations	50	50	50	50
Window	- 42, 35	-42, 35	-42, 35	- 42, 35
Restricting Region Mean	0.080	0.055	0.040	0.072
Restricting Region SD		0.192		0.358

Notes: The outcomes of interest for UCDP violent events and deaths (Sundberg and Melander, 2013) are whether a gridcell contains any, the number within a gridcell, and its log. See the notes to Table 1.

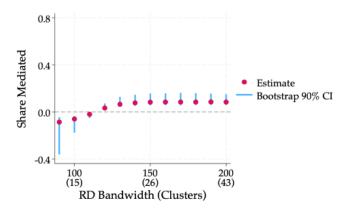
F6. HIV Risk Factors Not Linked to Southern Mozambican History

Table F6: Unrelated HIV Risk Factors [24]

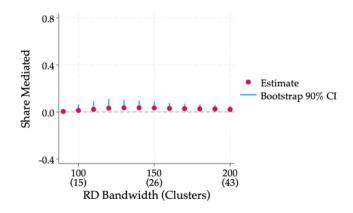
	Genital Ulcer in Last Year		Paid for Sex	Medically Circumcised	
	Women (1)	Men (2)	Men (3)	Men (4)	
Panel A. Optimal Bandwidth					
Sending Region	0.059	0.027	-0.012	0.024	
	(0.027)	(0.014)	(0.091)	(0.157)	
	[0.028]	[0.017]	[0.070]	[0.075]	
Observations	414	235	156	585	
Clusters	19	26	29	77	
Bandwidth	58.1	87.5	127.1	188.2	
Wild Cluster Bootstrap <i>p</i> -value	0.07	0.21	0.84	0.89	
Restricting Region Mean	0.005	0.008	0.047	0.154	
Panel B. Constant Bandwidth					
Sending Region	0.044	0.025	-0.012	0.069	
	(0.017)	(0.015)	(0.095)	(0.201)	
	[0.019]	[0.018]	[0.072]	[0.092]	
Observations	930	343	156	344	
Clusters	40	39	29	39	
Bandwidth	125.0	125.0	125.0	125.0	
Wild Cluster Bootstrap <i>p</i> -value	0.05	0.26	0.84	0.75	
Restricting Region Mean	0.008	0.006	0.047	0.234	
Panel C. Randomization Inference					
Sending Region	0.043	0.026	0.011	0.052	
	{0.10}	{o.47}	{1.00}	{0.49}	
Observations	203	164	85	164	
Clusters	10	10	10	10	
Window	-28, 18	- 46, 39	- 46, 39	-46, 39	
Restricting Region Mean	0.000	0.000	0.053	0.256	

Notes: The outcomes of interest are whether a respondent reports having had a genital ulcer in the last year and whether a man reports having ever paid for sex and having been medically circumcised. See the notes to Table 3.

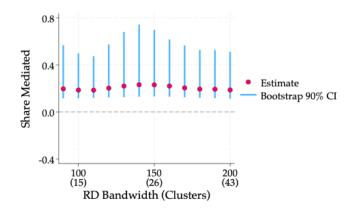
F7. Mediation Analysis of HIV RD Result

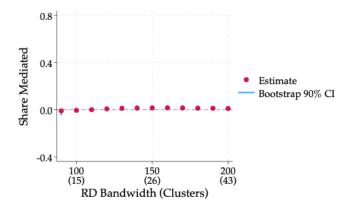

Table F7: Mediation Analysis of HIV RD Result [24]

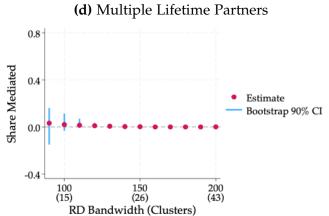
	Outcome Variable: HIV Positive (Pooled)							
3.6.11	Asset	Years of	Age Gap	Multiple	Condom			
Mediating Variable:	Score	School	Last Sex	Partners	Last Sex			
	(1)	(2)	(3)	(4)	(5)			
Panel A. Optimal Bandwidt	-h	. ,		(1)				
Mediation Effect	n 0.008	0.004	0.022	0.001	0.001			
Mediation Effect	[-0.016, 0.035]	-0.004 [-0.015, 0.002]	-0.033 [-0.069, -0.003]	-0.001	-0.001 [-0.008, 0.004]			
Total Effect	-0.138	-0.119	-0.162	[-0.006, 0.004] -0.128	-0.115			
iotai Effect	[-0.234, -0.046]	[-0.200, -0.037]	[-0.263, -0.052]	[-0.204, -0.053]	[-0.203, -0.023]			
Share of Total Mediated	-0.234, -0.040]	0.035	0.202	0.005	0.011			
Share of Total Mediated	[-0.152, -0.032]	[0.020, 0.100]	[0.123, 0.569]	[0.003, 0.012]	[0.006, 0.041]			
	[0.152, 0.052]	[0.020, 0.100]	[0.123, 0.309]	[0.003, 0.012]	[0.000, 0.041]			
Observations	610	719	291	798	610			
Bandwidth	103.4	131.8	119.8	118	118.6			
Clusters	15	23	17	20	20			
Restricting Region Mean	0.202	0.207	0.194	0.211	0.215			
Panel B. Constant Bandwid								
Mediation Effect	-0.007	-0.004	-0.032	-0.001	-0.001			
T . 1 T	[-0.023, 0.006]	[-0.015, 0.002]	[-0.066, -0.004]	[-0.008, 0.003]	[-0.007, 0.003]			
Total Effect	-0.127	-0.118	-0.148	-0.127	-0.114			
Chana (Tatal Madiata)	[-0.191, -0.062]	[-0.203, -0.033]	[-0.248, -0.041]	[-0.194, -0.061]	[-0.190, -0.033]			
Share of Total Mediated	0.052	0.034	0.211	0.011	0.007			
	[0.035, 0.107]	[0.019, 0.108]	[0.123, 0.624]	[0.007, 0.022]	[0.004, 0.022]			
Observations	842	677	297	842	645			
Bandwidth	125	125	125	125	125			
Clusters	21	21	18	21	21			
Restricting Region Mean	0.211	0.207	0.194	0.211	0.215			
Panel C. Optimal Bandwidt								
Mediation Effect	-0.008	0.000	-0.033	-0.003	-0.004			
T . 1 T	[-0.030, 0.005]	[-0.006, 0.006]	[-0.068, -0.003]	[-0.014, 0.005]	[-0.017, 0.004]			
Total Effect	-0.124	-0.139	-0.146	-0.148	-0.152			
O1 (TF (13.6 1) + 1	[-0.239, -0.008]	[-0.255, -0.019]	[-0.260, -0.020]	[-0.267, -0.031]	[-0.272, -0.024]			
Share of Total Mediated	0.063	-0.001	0.217	0.017	0.026			
	[0.029, 0.316]	[-0.005, -0.001]	[0.112, 0.867]	[0.009, 0.064]	[0.014, 0.107]			
Observations	317	295	289	289	289			
Bandwidth	131.2	122.3	119.9	119.2	118.1			
Clusters	19	18	17	17	17			
Restricting Region Mean	0.190	0.190	0.190	0.190	0.190			


Notes: Bootstrapped 90-percent confidence intervals are in brackets. In Panel A, the RD bandwidths are MSE-optimal for the sample of observations with HIV blood tests and non-missing values for the mediator of interest. In Panel C, the RD bandwidth is MSE-optimal for the sample of observations with HIV blood tests and non-missing values for all 5 mediators. Means and standard deviations are calculated using observations within the RD bandwidth.

F8. RD Mediation Analysis: Varying Local Linear Bandwidths

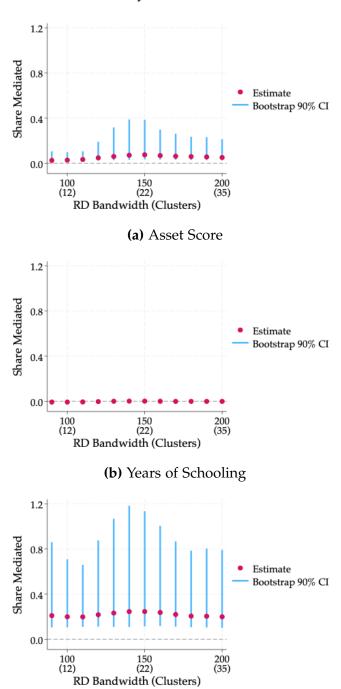

Figure F1: RD Mediation Analysis Estimates [24]


(a) Asset Score

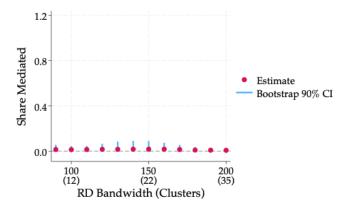


(b) Years of Schooling

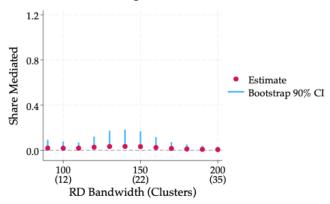
(c) Age Gap at Last Sex



(e) Condom Last Sex

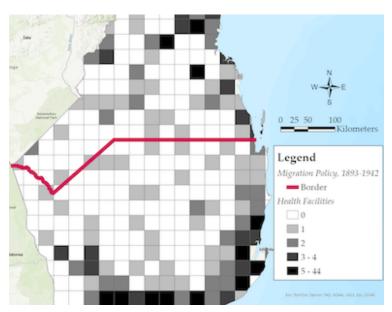

Notes: The graphs show mediation analysis RD estimates and 90-percent bootstrapped confidence intervals for the respective outcomes across a range of bandwidths using observations with HIV blood tests and non-missing values for the mediator of interest.

F9. RD Mediation Analysis: Varying Local Linear Bandwidths with Constant Sample


Figure F2: RD Mediation Analysis Estimates with Constant Sample [24]

(c) Age Gap at Last Sex

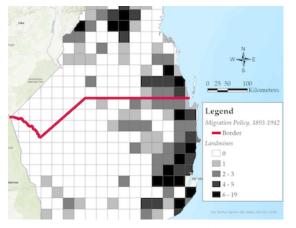
(d) Multiple Lifetime Partners

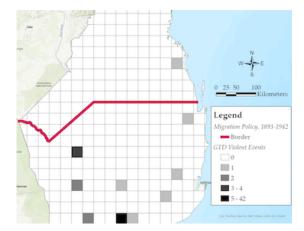

(e) Condom Last Sex

Notes: The graphs show mediation analysis RD estimates and 90-percent bootstrapped confidence intervals for the respective outcomes across a range of bandwidths using observations with HIV blood tests and non-missing values for all mediating variables.

Appendix G. Additional Figures: Proximate Causes

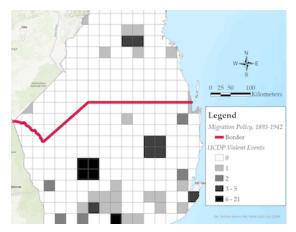
G1. Public-Sector Health Infrastructure


Figure G1: Public-Sector Health Facilities, 2018 [23]



Notes: The map shows counts of public-sector health facilities in each gridcell from Maina et al. (2019).

G2. Civil War Violence and Landmines


Figure G2: Maps of Civil War Violent Events and Landmines by Gridcell [23]

(a) Known and Suspected Landmines, 2007

(b) Global Terrorism Database, 1978-92

(c) Uppsala Conflict Data Program, 1989-92

Notes: The top left map shows the number of known and suspected landmines per gridcell reported in Republic of Mozambique (2008). The top right map shows the number of 1978-92 violent events per gridcell from the Global Terrorism Database (START, 2022). The bottom map shows the number of 1989-92 violence events per gridcell from the Uppsala Conflict Data Program (Sundberg and Melander, 2013).

Appendix H. Robustness Checks: Historical Channels

H1. 1940 Circular Migration RD Plots by Age Group

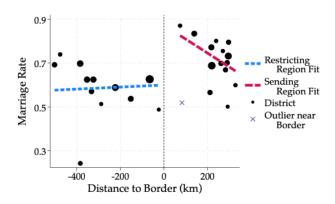
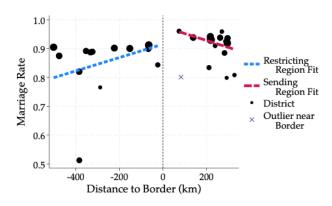
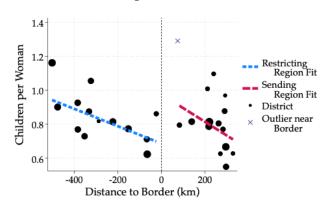

0.5 Circular Migration Rate Circular Migration Rate 0.4 Restricting Region Fit Restricting Region Fit 0.3 Sending Region Fit Sending Region Fit 0.2 Binned Average Binned Average 95% CI 95% CI 0.1 Distance to Border (km) Distance to Border (km) (a) Men 15-24 (b) Men 25-34 0.5 0.5 Circular Migration Rate Circular Migration Rate 0.4 Restricting Region Fit Restricting Region Fit 0.3 ending Region Fit ending Region Fit 0.2 Binned Average Binned Average 95% CI 0.1 0.0 -200 -200 Distance to Border (km) Distance to Border (km) (c) Men 35-44 (d) Men 45-54 Circular Migration Rate Restricting Region Fit ending Region Fit Binned Average 95% CI 00 -200 0 20 Distance to Border (km) 200 (e) Men 55-64

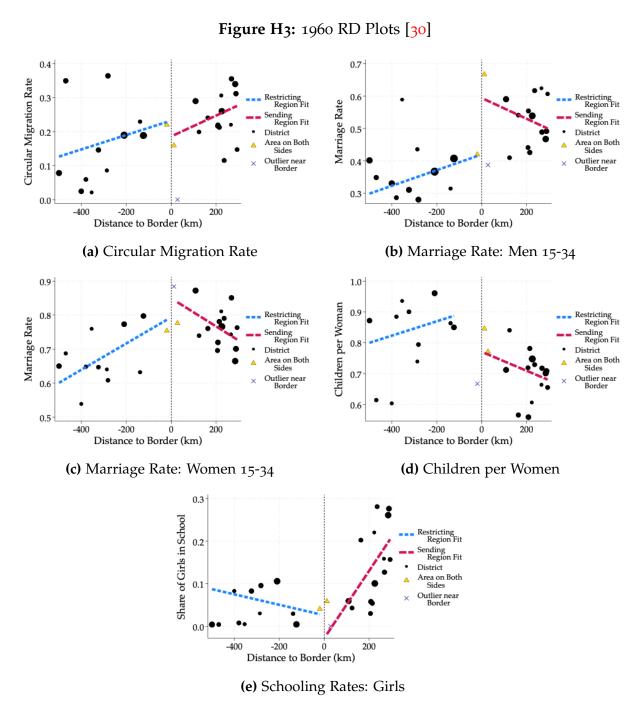
Figure H1: 1940 Circular Migration Rates [27, 61]


Notes: The graphs show circular migration rates for men in the respective age groups. See the notes to Figure 8.

H2. 1940 RD Plots Showing Excluded Outliers

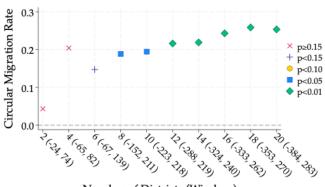

Figure H2: 1940 RD Plots [30]

(a) Marriage Rate: Men 15-34



(b) Marriage Rate: Women 15-34

(c) Children per Women


Notes: The graphs show each group's outcome in each district, which is weighted by the size of the group in it. A district excluded as an outlier is shown as a purple x. The running variable is a district's distance to the historical border and the linear fits on each side are estimated using a triangular kernel.

Notes: The graphs show each group's outcome in each district, which is weighted by the size of the group in it. A district with area on both sides of the former border is shown as a yellow triangle, and district excluded as an outlier is shown as a purple x. The running variable is a district's distance to the historical border and the linear fits on each side are estimated using a triangular kernel.

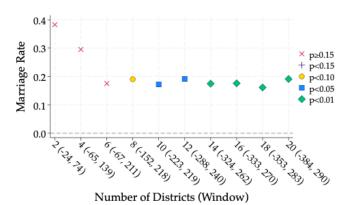
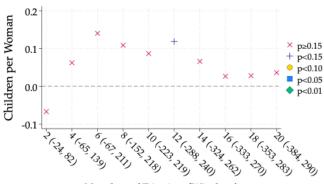
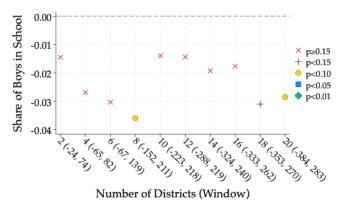

H4. 1940 Randomization Inference: Varying Windows

Figure H4: 1940 Results [30]



Number of Districts (Window)

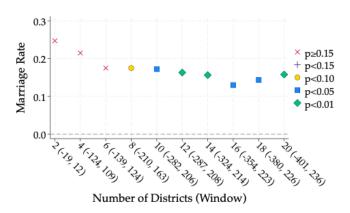
(a) Circular Migration Rate



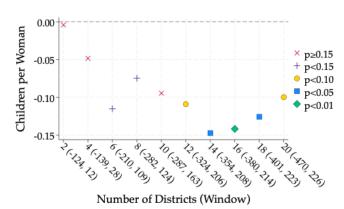
(b) Marriage Rate: Men 15-34

Number of Districts (Window)

(c) Children per Woman



(d) Schooling Rates: Boys


Notes: The graphs show randomization inference estimates and statistical significance for the respective outcomes and groups when including a range of districts in the sample. Randomization inference windows are in parentheses.

H₅. 1960 Randomization Inference: Varying Windows

Figure H₅: 1960 Results [30]

(a) Marriage Rate: Men 15-34

(b) Children per Woman

Notes: The graphs show randomization inference estimates and statistical significance for the respective outcomes and groups when including a range of districts in the sample. Randomization inference windows are in parentheses.

H6. 1940 Randomization Inference: Placebo Windows

Table H1: 1940 Outcomes [30]

	Men Migrants (1)	Women Farming (2)	Men Married (3)	Women Married (4)	Children per Woman (5)	Boys in School (6)	Girls in School (7)
Panel A. Restricting Regi	on						
Placebo Treatment	0.115 {0.14}	0.007 {0.81}	0.059 {0.52}	0.102 {0.16}	-0.092 {0.21}	-0.013 {0.71}	-0.004 {0.51}
Observations Placebo Cutoff	10 -255.7	10 -255.7	10 -255.7	10 -255.7	10 -2 55.7	10 -255.7	10
Window	-24, -384	-24, -384	-24, -384	-24, -384	-24, -384	-24, -384	-24, -384
Placebo Control Mean Placebo Control SD	0.000	0.950	0.520	0.790	0.850 0.130	0.050	0.010
Panel B. Sending Region							
Placebo Treatment	0.003 {0.98}	-0.005 {0.68}	-0.021 {0.72}	0.002 {0.97}	-0.009 {0.91}	-0.016 {0.64}	-0.001 {0.86}
Observations	10	10	10	10	10	10	10
Placebo Cutoff Window	218.5 74, 283	218.5 74, 283	229.5	229.5	218.5 82, 290	218.5	E4 282
Placebo Control Mean Placebo Control SD	0.310	0.950	74, 290 0.750	74, 290 0.920	0.840 0.090	74, 283 0.020	74, 283 0.010

Notes: The table replicates Table 4 Panel B when moving the border 5 districts north into the restricting region (Panel A) or 5 districts south into the sending region (Panel B).

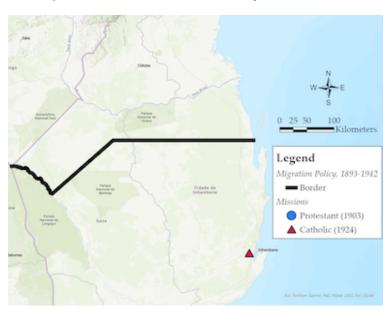
H7. 1960 Randomization Inference: Placebo Windows

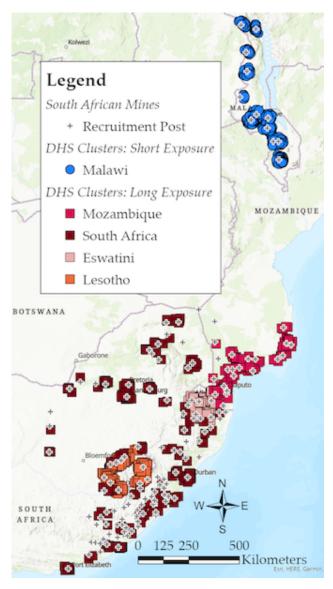
Table H2: 1960 Outcomes [30]

	Men Migrants (1)	Women Farming (2)	Men Married (3)	Women Married (4)	Children per Woman (5)	Boys in School (6)	Girls in School (7)
Panel A. Restricting Regi	on						
Placebo Treatment	0.171 {0.00}	-0.002 {0.17}	-0.033 {0.64}	0.066 {0.29}	0.054 {0.46}	-0.038 {0.27}	0.013 {0.61}
Observations Placebo Cutoff	10 -284.2	10 -284.2	10 -284.2	10 -284.2	10 -284.2	10 -284.2	10
Window	-19, -401	-19, -401	-19, -401	-19, -401	-124, -47 0	-19, -401	-19, -401
Placebo Control Mean Placebo Control SD	0.070	1.000	0.390	0.650	0.790 0.160	0.120	0.040
Panel B. Sending Region							
Placebo Treatment	0.002 {0.99}	0.002 {0.49}	0.004 {0.93}	0.005 {0.84}	-0.064 {0.34}	-0.004 {0.91}	0.064 {0.19}
Observations	10	10	10	10	10	10	10
Placebo Cutoff	207.2	184.8	207.2	207.2	207.2	184.8	
Window Placebo Control Mean Placebo Control SD	12, 236 0.220	12, 226 1.000	12, 236 0.530	28, 236 0.770	12, 226 0.750 0.120	12, 226 0.110	12, 236 0.080

Notes: The table replicates Table 4 Panel D when moving the border 5 districts north into the former restricting region (Panel A) or 5 districts south into the former sending region (Panel B).

H8. Colonial Missionary Presence



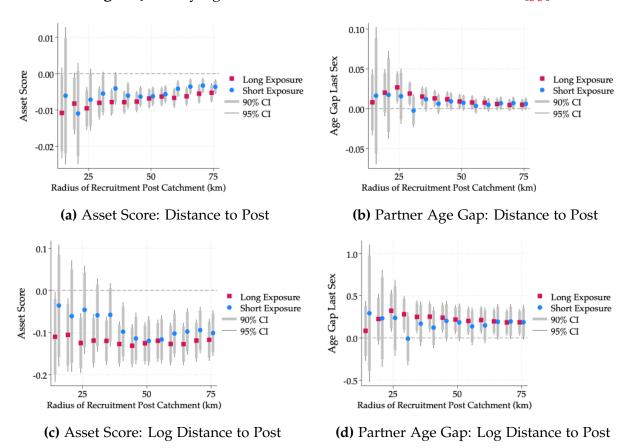

Figure H6: Colonial Missionary Presence [30]

Notes: The map shows the locations of Protestant missions in 1903 and Catholic mission in 1924 from Cagé and Rueda (2016).

Appendix I. Additional Figures: Effects across Southern Africa

I1. Mine Labor Recruitment Posts and DHS Clusters in Southern Africa

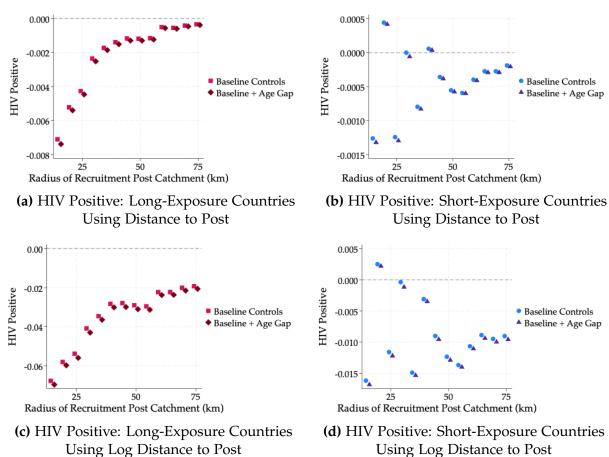
Figure I1: DHS Clusters within 25 km of Recruitment Posts [31]



Notes: The map shows the locations of mine labor recruitment posts (see Appendix A1) overlaid on georeferenced DHS survey clusters in the 5 listed countries within 25 km of a post. Countries are grouped by whether they or regions within them had a short (blue circles) or long exposure to circular migration (squares of red-based colors) using the data presented in Figure 1.

Appendix J. Robustness Checks: Effects across Southern Africa

J1. Asset Ownership and Age-Disparate Relationships


Figure J1: Varying Catchment Radius and Distance Measure [33]

Notes: The graphs show regression estimates and 90- and 95-percent confidence intervals for the respective outcomes and measures of distance across a range of catchment radii. See the notes to Figure 9.

J2. Suppression of HIV-Migration Link by Age-Disparate Relationships

Figure J2: Varying Catchment Radius and Distance Measure [33]

Notes: The graphs show regression estimates for the respective outcomes and measures of distance across a range of catchment radii. Lighter-colored shapes on the left side of each pair are estimates including baseline controls only. Darker-colored shapes on the right side of each pair are estimates baseline controls

and partner age gaps. Confidence intervals are omitted to make the differences between estimates appar-

ent. See the notes to Figure 9.